ปฏิกิริยาเคมีต่อชีวิตและสิ่งแวดล้อม

66

ผลปฏิกิริยาเคมีต่อชีวิตและสิ่งแวดล้อม

การเกิดปฏิกิริยาเคมีบางปฏิกิริยาทำให้เกิดผลิตภัณฑ์ที่ก่อให้เกิดปัญหาด้านสิ่งแวดล้อม ซึ่งมีผลกระทบต่อสิ่งแวดล้อมดังนี้

1. เกิดปรากฏการณ์เรือนกระจก เกิดจากก๊าซคาร์บอนไดออกไซด์ คลอโรฟลูออโรคาร์บอน และมีเทนที่เกิดขึ้นในปริมาณมาก เนื่องจากการกิจกรรมอันหลากหลายของมนุษย์ เมื่อได้รับพลังงานจากดวงอาทิตย์ รังสีอัลตราไวโอเลต (UV) จากดวงอาทิตย์มีพลังงานสูงทะลุผ่านชั้นก๊าซเรือนกระจก เมื่อผิวโลกร้อนขึ้นจะคายพลังงานความร้อนในรูปของรังสีอินฟาเรด ซึ่งมีพลังงานต่ำไม่สามารถทะลุผ่านชั้นก๊าซเรือนกระจกออกไปได้ ทำให้อุณหภูมิของโลกสูงขึ้น คาดว่าอีกประมาณ 100 ปีข้างหน้าอุณหภูมิของโลกจะสูงขึ้น 1- 5 องศาเซลเซียส ส่วนใหญ่ก๊าซที่ทำให้เกิดชั้นเรือนกระจก ได้แก่ ก๊าซคาร์บอนไดออกไซด์(CO2เกิดปรากฎการณ์เรือนกระจกได้ถึง 57 เปอร์เซ็นต์ ซึ่งเกิดจากการเผาไหม้เชื้อเพลิงเป็นส่วนใหญ่ ดังสมการ

    สารเชื้อเพลิง + ก๊าซออกซิเจน + ก๊าซคาร์บอนไดออกไซด์ + ไอน้ำ

ปริมาณก๊าซคาร์บอนไดออกไซด์ที่เพิ่มขึ้นเกิดจากกิจกรรมต่าง ๆ ดังนี้

1. โรงงานอุตสาหกรรม

2. การเผาไหม้เชื้อเพลิงจากยานพาหนะ

3. การตัดไม้ทำลายป่า การเผาป่า

แนวทางในการป้องกัน

1. ควบคุมเครื่องยนต์ในยาพาหนะให้มีสภาพดี และเลือกใช้น้ำมันเชื้อเพลิงคุณภาพดี ลดปริมาณการใช้เชื้อเพลิงฟอสซิล

2. แก้ไขปัญหาจราจรหนาแน่น

3. ปฏิบัติตามกฎหมายเกี่ยวกับเรื่องควบคุมปริมาณควันไอเสียของโรงงาน และยานพาหนะสู่บรรยากาศ

4. ไม่ตัดไม้ทำลายป่า เผาป่า และเผาฟางข้าวในนา

5. กำจัดขยะให้ถูกวิธี หลีกเลี่ยงการเผาขยะ

2. ก๊าซโอโซนถูกทำลาย การที่ก๊าซโอโซนถูกทำลายทำให้บรรยากาศของโลกมีอุณหภูมิสูงขึ้น

    สาเหตุ เกิดจากก๊าซคลอโรฟลูออโรคาร์บอน (CFC) ที่มนุษย์สังเคราะห์ขึ้นใช้ในการผลิตทางอุตสาหกรรม เช่น เครื่องทำความเย็นทั้งหลาย ใช้ในการผลิตโฟม สารขับดันในกระป๋องสเปรย์ เป็นต้น โดยไปทำลายโอโซน (O3ที่ช่วยดูดกลืนรังสีอัลตราไวโอเลตซึ่งเป็นรังสีที่มองไม่เห็น

    ผลกระทบ เกิดรูโหว่ของบรรยากาศชั้นโอโซน ทำให้รังสีอัลตราไวโอเลตผ่านบรรยากาศของโลกได้มากขึ้น ซึ่งเป็นอันตรายต่อมนุษย์ ถ้ามนุษย์ได้รับรังสีอัลตราไวโอเลตมากเกินไปจะทำให้เกิดโรคมะเร็งผิวหนัง ต้อกระจก ทำลายสิ่งมีชีวิตขนาดเล็ก ผลผลิตลดลง สารพันธุกรรมและเนื้อเยื่อถูกทำลาย เป็นต้น

    แนวทางในการป้องกัน

1. ใช้ก๊าซมีเทนและก๊าซเพนเทนในการผลิตโฟมแทนก๊าซคลอโรฟลูออโรคาร์บอน

2. เปลี่ยนสารขับดันในกระป๋องสเปรย์จากก๊าซคลอฟลูออโรคาร์บอนเป็นน้ำหรือสารอื่นแทน

3. ก๊าซคาร์บอนมอนนอกไซด์ (CO) เกิดจากการเผาไหม้ไม่สมบูรณ์ของเชื้อเพลิง เช่น การเผาไหม้ในที่อับอากาศ เป็นต้น ส่วนใหญ่มาจากท่อไอเสียรถยนต์

    ผลกระทบ ก๊าซคาร์บอนมอนอกไซด์เข้าไปขัดขวางการทำงานของเม็ดเลือดแดง ซึ่งทำหน้าที่ลำเลียงก๊าซออกซิเจน (O2การรวมตัวของเม็ดเลือดแดง (Hb) กับก๊าซคาร์บอนมอนอกไซด์ทำให้ปริมาณก๊าซออกซิเจนที่ถูกนำไปใช้ลดลง ถ้าร่างกายได้รับก๊าซคาร์บอนมอนอกไซด์มากอาจเป็นอันตรายถึงชีวิต

    แนวทางในการป้องกัน

1. ปรับปรุงคุณภาพและประสิทธิภาพของเครื่องยนต์ในยานพาหนะให้เกิดการเผาไหม้ที่สมบูรณ์

2. ป้องกันปัญหาการเกิดจราจรหนาแน่นและรถติด

3. ปรับปรุงระบบขนส่งมวลชนและรถไฟ ให้เพียงพอในการให้บริการประชาชน เพื่อลดการใช้รถยนต์ส่วนบุคคล

4. ฝนกรด เกิดจากน้ำฝนในธรรมชาติเป็นตัวทำละลายก๊าซซัลเฟอร์ไดออกไซด์ (SO2และก๊าซไนโตรเจนไดออกไซด์ (NO2เกิดเป็นสารละลายที่มีสมบัติเป็นกรด

สิ่งที่ทำให้เกิดปฏิกิริยาระหว่างซัลเฟอร์ไดออกไซด์และไนโตรเจนไดออกไซด์ เช่น เกิดจากการระเบิดภูเขา การเผาไหม้ที่ไม่สมบูรณ์ การเผาไหม้ถ่านหิน เชื้อเพลิงที่มีกำมะถัน ฟ้าแลบฟ้าผ่า เป็นต้น

    ผลกระทบ ฝนกรดจะเกิดอันตรายต่อระบบทางเดินหายใจและเนื้อเยื่อต่าง ๆ ของร่างกาย ทำให้พืชเจริญเติบโตช้า ถ้าเกิดเป็นปริมาณมากหรือได้รับเป็นเวลานาน พืชอาจตายได้ นอกจากนี้สิ่งก่อสร้างที่เป็นโลหะและหินอ่อนจะถูกทำลาย

    แนวทางในการป้องกัน

1. ควบคุมการปล่อยควันจากโรงงานอุตสาหกรรมและโรงไฟฟ้าให้มีการจำกัดก๊าซซัลเฟอร์ไดออไซด์และก๊าซไนโตรเจนไดออกไซด์ก่อนกำจัดออกสู่บรรยากาศ

2. ควบคุมเครื่องจักรกลของโรงงานอุตสาหกรรมให้มีการเผาไหม้ที่สมบูรณ์ และเลือกใช้เชื้อเพลิงที่มีคุณภาพ

3. ใช้พลังงานทดแทนจากธรรมชาติ เช่น พลังงานแสงอาทิตย์ พลังงานน้ำไหลแทนการเผาไหม้เชื้อเพลิงประเภทฟอสซิล เป็นต้น

5. อันตรายจากการใช้ธาตุกัมมันตรังสี กิดการรั่วไหลของรังสีที่นำมาใช้ในกิจกรรมต่าง ๆ เช่น โรงไฟฟ้านิวเคลียร์ ใช้ทางการแพทย์ ทางอุตสาหกรรม ทางการเกษตร เป็นต้น ถ้าไม่ระมัดระวังอาจเกิดการรั่วไหลของรังสีและเกิดเป็นอันตราย เนื่องจากรังสีสามารถทำลายเซลล์ ทำให้เซลล์ตายและอาจสูญเสียอวัยวะหรือชีวิตได้

    แนวทางในการป้องกัน

1. ต้องตรวจสอบสภาพของที่เก็บรังสีให้อยู่ในสภาพปลอดภัย

2. ให้ความรู้เกี่ยวกับสัญลักษณ์ของสารกัมมันตรังสี และห้าไม่ให้บุคคลเข้าใกล้บริเวณที่มีรังสีมาก

การใช้สารเคมี

 

การใช้สารเคมีอย่างถูกต้องและปลอดภัย

ในชีวิตประจำวันจะต้องเกี่ยวข้องกับสารต่าง ๆ มากมาย เนื่องจากสิ่งต่าง ๆ ที่อยู่รอบตัวเราจัดเป็นสารประกอบทั้งสิ้น เมื่อนำมาใช้ประโยชน์อาจจะทำให้เกิดผลกระทบ ซึ่งเป็นอันตรายต่อสิ่งมีชีวิตและสิ่งแวดล้อมได้ถ้าใช้ไม่ถูกต้อง ใช้ในปริมาณมากเกินไป ใช้แล้วไม่จัดเก็บให้เหมาะสม หรือไม่มีความรู้เกี่ยวกับสารนั้น เพื่อให้การใช้สารเคมีอย่างถูกต้องและปลอดภัยควรปฏิบัติดังนี้

1. ผู้ใช้ควรมีความรู้เกี่ยวกับสมบัติของสารที่จะใช้ วิธีใช้และจัดเก็บรักษา เช่น สารที่เป็นยาฆ่าแมลงหรือสารประเภทสเปรย์ควรเก็บไว้ในที่ห่างไกลจากความร้อน เนื่องจากอาจระเบิดได้ และควรเก็บไว้ในที่ที่เด็กหยิบไม่ถึง

2. ก่อนใช้สารเคมีทุกชนิดต้องอ่านฉลากเพื่อทำความเข้าใจเกี่ยวกับวิธีใช้สาร

3. ไม่ควรใช้สารเคมีมากเกินไปและไม่ทิ้งสารเคมีในที่สารธารณะหรือกองขยะ ควรแยกทิ้ง โดยใส่ถุงสีน้ำเงิน ซึ่งเจ้าหน้าที่จะเก็บไปทำลายได้ถูกต้อง และถ้ามีปริมาณมากต้องแจ้งเจ้าหน้าที่เทศบาลหรือสุขาภิบาลให้นำไปทำลาย

4. ควรรู้จักสัญลักษณ์เกี่ยวกับสารที่เป็นอันตราย เพื่อหลีกเลี่ยงจากอันตราย เช่น

หมายถึง ระวังอันตรายจากสารกัมมันตรังสี ควรหลีกเลี่ยง
หมายถึง วัตถุมีพิษห้ามรับประทาน
หมายถึง ระวังวัสดุไว้ไฟ ห้าเข้าใกล้เปลวไฟ
หมายถึง ระวังอันตรายจากเชื้อโรค
หมายถึง ระวังสารกัดกร่อน เช่น กรด เบส

5. ถ้ามีการกลืนสารพิษประเภทยาฆ่าแมลงให้ดื่มนมสดหรือกินไข่ดิบ เพื่อทำให้เกิดการตกตะกอนของสารพิษและอาเจียน หลังจากนั้นจึงนำส่งโรงพยาบาล

6. ถ้าถูกสารเคมีให้รีบล้างน้ำสะอาดทันที

7. ไม่ควรกำจัดขยะประเภทพลาสติกโดยการเผา เนื่องจากเกิดไอเป็นพิษ

8. สารประเภทโลหะเมื่อใช้แล้วควรเช็ดให้แห้ง เพื่อป้องกันการเกิดสนิม

ข้อมูลจาก http://school.obec.go.th/padad/scien32101/Matter/2Matter.html

ปัจจัยที่มีผลต่อการเกิดปฏิกิริยา

77

ปัจจัยที่มีผลต่ออัตราการเกิดปฏิกิริยาเคมี
1. ชนิดของสารตั้งต้น สารตั้งต้นแต่ละชนิดจะมีความสามารถเกิดปฏิกิริยาเคมีที่แตกต่างกัน โดยสารตั้งต้นชนิดหนึ่งอาจจะสามารถเกิดปฏิกิริยาได้เร็วกับสารชนิดหนึ่ง แต่อาจเกิดปฏิกิริยาได้ช้ากับสารอีกชนิดหนึ่งก็ได้ ตัวอย่างเช่น โลหะแมกนีเซียมจะสามารถทำปฏิกิริยาได้ดีกับสารละลายกรดเกิดเป็นแก๊สไฮโดรเจน แต่แมกนีเซียมจะทำปฏิกิริยากับออกซิเจนได้ช้ามาก หรือการที่โลหะ โซเดียมที่สามารถทำปฏิกิริยากับน้ำได้อย่างรวดเร็วมาก ขณะที่โลหะแมกนีเซียมจะทำปฏิกิริยากับน้ำได้ช้า เป็นต้น
2. ความเข้มข้นของสารตั้งต้น ปฏิกิริยาโดยส่วนมากจะเกิดได้เร็วมากขึ้น ถ้าหากเราใช้สารตั้งต้นมีความเข้มข้นมากขึ้น เนื่องจากการเพิ่มความเข้มข้นของสารจะทำใหมีอนุภาคของสารอยู่รวมกันอย่างหนา แน่นมากขึ้น อนุภาคของสารจึงมีโอกาสชนกันแล้วเกิดปฏิกิริยาได้มากขึ้น
3. อุณหภูมิ หรือ พลังงานความร้อนจะมีผลต่อพลังงานภายในสาร โดยการเพิ่มอุณหภูมิจะเป็นการเพิ่มพลังงานจลน์ให้แก่อนุภาคของสารทำให้ อนุภาคของสารเคลื่อนที่ได้เร็วขึ้น จึงช่วยเพิ่มโอกาสในการชนกันของอนุภาคมากขึ้น นอกจากนี้การเพิ่มพลังงานให้แก่สารจะช่วยทำให้สารมีพลังงานภายในมากกว่าค่า พลังงานก่อกัมมันต์จึงทำให้เกิดปฏิกิริยาเร็วขึ้นได้ เช่น การเก็บอาหารในตู้เย็นเพื่อป้องการการเน่าเสีย เป็นต้น
4. ตัวเร่งปฏิกิริยา เป็นสารที่เติมลงไปในปฏิกิริยาโดยสารเหล่านี้จะไม่มีผลต่อการเกิดผลิตภัณฑ์ ของปฏิกิริยาทำให้ปฏิกิริยาแต่จะมีผลไปลดค่าพลังงานก่อกัมมันต์ของปฏิกิริยา แต่จะมีผลไปลดค่าพลังงานก่อกัมมันต์ของปฏิกิริยาทำให้ปฏิกิริยานั้นเกิดได้ ง่ายมากขึ้น และหลังจากการเกิดปฏิกิริยาแล้ว ตัวเร่งปฏิกิริยาที่ใส่ลงไปจะยังคงมีสมบัติและปริมาณเหมือนเดิม โดยตัวเร่งปฏิกิริยาที่สามารถพบได้ในชีวิตประจำวัน ได้แก่ เอนไซม์ต่าง ๆ ในร่างกายของเราซึ่งมีลักษณะเป็นตัวเร่งปฏิกิริยาช่วยให้เกิดการย่อยอาหาร ได้เร็วมากขึ้น เป็นต้น

ตัวอย่าง

 

5. ตัวหน่วงปฏิกิริยา เป็นสารที่เติมลงไปในปฏิกิริยาโดยที่สารเหล่านี้จะไม่มีผลต่อการเกิด ผลิตภัณฑ์ของปฏิกิริยา แต่จะมีผลไปเพิ่มค่าพลังงานก่อกัมมันต์ของปฏิกิริยา จึงทำให้สารเกิดปฏิกิริยาได้ยากขึ้นหรือมีผลยับยั้งการเกิดปฏิกิริยาแล้ว ตัวหน่วงปฏิกิริยาทางเคมีและมีมวลเท่าเดิม แต่อาจมีสมบัติทางภาพบางอย่างเปลี่ยนแปลงไป เช่น มีขนาด หรือรูปร่างเปลี่ยนไป โดยตัวหน่วงปฏิกิริยาที่พบได้ชีวิตประจำวัน ได้แก่ สารกันบูดในอาหาร ที่ช่วยยับยั้งปฏิกิริยาที่ทำให้เกิดการเน่าเสียของอาหาร เป็นต้น

ตัวอย่าง

6. พื้นที่ผิวของสารตั้งต้น ในกรณีที่สารตั้งต้นเป็นของแข็ง การเพิ่มพื้นที่ผิวของสารจะช่วยให้เกิดปฏิกิริยาเคมีเร็วขึ้นได้ เนื่องจากพื้นที่ผิวที่เพิ่มขึ้นจะทำให้สารมีพื้นที่สำหรับการเข้าทำ ปฏิกิริยากันได้มากขึ้น ตัวอย่างเช่น การเคี้ยวอาหารให้ละเอียดก่อนกลืน จะช่วยทำให้อาหารมีขนาดเล็กลง และมีพื้นที่ผิวเพิ่มมากขึ้น จึงทำให้น้ำย่อยในระบบทางเดินอาหารสามารถเข้าย่อยอาหารได้ง่ายขึ้น เป็นต้น

ตัวอย่าง

 

7. ความดัน จะมีผลทำให้สารที่เป็นแก๊สสามารถทำปฏิกิริยากันได้ดีขึ้น เนื่องจากการเพิ่มความดันจะช่วยทำให้โมเลกุลของแก๊สเข้าอยู่มาอยู่ใกล้ชิด กันมากขึ้น มีจำนวนโมเลกุลของแก๊สต่อหน่วยพื้นที่เพิ่มขึ้น จึงมีโอกาสชนกันและเกิดปฏิกิริยาเคมีมากขึ้น ซึ่งลักษณะเช่นนี้ก็คล้ายกับกรณีที่สารที่มีความเข้มข้นมากจะสามารถเกิด ปฏิกิริยาได้เร็วขึ้นนั่นเอ

มวล พลังงาน กับการเกิดปฏิกิริยาเคมี

ปฏิกิริยาเคมี

พลังงานกับการเกิดปฏิกิริยา

                      พลังงานเคมี (Chemical energy)  เป็นพลังงานศักย์ที่แฝงอยู่ในโครงสร้างของสาร เช่น อยู่ในรูปของน้ำมันเชื้อเพลิง ไขมัน  ซึ่งเมื่อเกิดการเผาไหม้จะปล่อยพลังงานเคมีออกมาและนำมาใช้ประโยชน์ได้พลังงานเคมีเป็นพลังงานที่มีส่วนเกี่ยวข้องและสำคัญกับสิ่งมีชีวิตมาก

                       ในการเกิดปฏิกิริยาของสารแต่ละปฏิกิริยานั้น ต้องมีพลังงานเข้ามาเกี่ยวข้องกับการเกิดปฏิกิริยาเคมี 2 ขั้นตอน ดังนี้

ขั้นที่ 1 เป็นขั้นที่ดูดพลังงานเข้าไปเพื่อสลายพันธะในสารตั้งต้น

ขั้นที่ 2 เป็นขั้นที่คายพลังงานออกมาเมื่อมีการสร้างพันธะในผลิตภัณฑ์

 1.ปฏิกิริยาดูดความร้อน ( Endothermic reaction)

                     เป็นปฏิกิริยาที่ดูดพลังงานเข้าไปสลายพันธะมากกว่าที่คายออกมาเพื่อสร้าง พันธะ โดยในปฏิกิริยาดูดความร้อนนี้สารตั้งต้นจะมีพลังงานต่ำกว่าผลิตภัณฑ์ จึงทำให้สิ่งแวดล้อมเย็นลง  อุณหภูมิลดลง เมื่อเอามือสัมผัสภาชนะจะรู้สึกเย็นดังภาพ

2.ปฏิกิริยาคายความร้อน ( Exothermic reaction)
                    เป็นปฏิกิริยาที่ดูดพลังงานเข้าไปสลายพันธะน้อยกว่าที่คายออกมาเพื่อสร้าง พันธะ โดยในปฏิกิริยาคายความร้อนนี้สารตั้งต้นจะมีพลังงานสูงกว่าผลิตภัณฑ์จึงให้พลังงานความร้อนออกมาสู่สิ่งแวดล้อมทำให้อุณหภูมิสูงขึ้นเมื่อเอามือสัมผัสภาชนะจะรู้สึกร้อน ดังภา
 
 

สมการเคมี

55

สมการเคมี  (Chemical equation)

สมการเคมี คือ  กลุ่มสัญลักษณ์ที่เขียนแทนปฏิกิริยาเคมี  ให้ทราบถึงการเปลี่ยนแปลงทางเคมีที่เกิดขึ้นในระบบ  สมการเคมีประกอบด้วยสัญลักษณ์ แสดงสารตั้งต้น และผลิตภัณฑ์  เงื่อนไขแสดงปฏิกิริยาเคมีที่เกิดขึ้น  พร้อมด้วยลูกศรทิศทางแสดงของปฏิกิริยา

สารตั้งต้น                             ผลิตภัณฑ์

 

Zn (s)  +2HCl(aq)                        ZnCl2(aq)  +  H2(g)

 

สารที่เขียนทางซ้ายมือของลูกศร เรียกว่า สารตั้งต้น

สารที่เขียนทางขวามือของลูกศร เรียกว่า สารผลิตภัณฑ์

เครื่องหมาย + หมายถึงทำปฏิกิริยากัน

เครื่องหมาย                     แสดงการเปลี่ยนแปลงของสารตั้งต้นไปเป็นสารผลิตภัณฑ์

สมการเคมีมี  2  ประเภท   คือ

1.สมการโมเลกุล (Molecule equation)  เป็นสมการเคมีของปฏิกิริยาที่มารตั้งต้นและผลิตภัณฑ์เป็นรูปอะตอม  หรือโมเลกุล  เช่น

2NaHCO3(s)                     Na2CO3(s)  +  H2O(l)  +  CO2(g)

2.สมการไอออนิก (Ionic equation) เป็นสมการเคมีของปฏิกิริยาที่สารตั้งต้นและผลิตภัณฑ์  อย่างน้อง 1 ชนิดเป็นไอออน  เช่น

H+(aq)  +  OH-(aq)                      2H2O(l)

สมการเคมีที่สมบูรณ์  จะต้องมีจำนวนอะตอมของแต่ละธาตุ  ทางซ้ายและขวาเท่ากัน  เรียกว่า  สมดุลเคมี

 

การดุลสมการเคมี

วิธีการดุลสมการเคมีทั่วไป

ระบุว่าสารใดเป็นสารตั้งต้น และสารใดเป็นสารผลิตภัณฑ์

เขียนสูตรเคมีที่ถูกต้องของสารตั้งต้นและสารผลิตภัณฑ์ ซึ่งสูตรเคมีนี้จะไม่มีการเปลี่ยนแปลง

ดุลสมการโดยหาตัวเลขสัมประสิทธิ์มาเติมข้างหน้าสูตรเคมี เพื่อทำให้อะตอมชนิดเดียวกันทั้งซ้ายและขวาของสมการมีจำนวนเท่ากัน

ให้คิดไอออนที่เป็นกลุ่มอะตอมเปรียบเสมือนหนึ่งหน่วย ถ้าไอออนนั้นไม่แตกกลุ่มออกมาในปฏิกิริยา

ตรวจสอบอีกครั้งว่าถูกต้องโดยมีจำนวนอะตอมชนิดเดียวกันเท่ากันทั้งสองข้าง

EX.   อะลูมิเนียมซึ่งเป็นโลหะที่ว่องไวต่อปฏิกิริยากับกรด เมื่ออะลูมิเนียมทำปฏิกิริยากับกรดซัลฟิวริก จะเกิดแก๊สไฮโดรเจนและอะลูมิเนียมซัลเฟต  จงเขียนและดุลสมการของปฏิกิริยานี้

วิธีทำ       (1)  เขียนสูตรสารตั้งต้นและสารผลิตภัณฑ์  Al + H2SO4 —-> H2(g) + Al2(SO4)3

(2)  ดุลจำนวนอะตอม Al                2Al + H2SO4 —-> H2(g) + Al2(SO4)3

(3)  ดุลจำนวนกลุ่มไอออน SO42-        2Al + 3H2SO4 —-> H2(g) + Al2(SO4)3

(4)  ดุลจำนวนอะตอม H              2Al + 3H2SO4 —-> 3H2(g) + Al2(SO4)3

หลักในการเขียนสมการเคมี

ต้องเขียนสูตรเคมีของสารตั้งต้นแต่ละชนิดได้

ต้องทราบว่าในปฏิกิริยาเคมีหนึ่งเกิดสารผลิตภัณฑ์ใดขึ้นบ้าง และเขียนสูตรเคมีของสารผลิตภัณฑ์ได้

เมื่อเขียนสมการแสดงปฏิกิริยาเคมีได้แล้วให้ทำสมการเคมีให้สมดุลด้วยเสมอ คือทำให้จำนวนอะตอมของธาตุทุกชนิดทางซ้ายเท่ากับทางขวา โดยการเติมตัวเลขข้างหน้าสูตรเคมีของสารนั้นๆ เช่น

N2 + H2 —-> NH3 ไม่ถูกต้อง เพราะสมการนี้ไม่ดุล

 

N2 + 3H2 —-> 2NH3 ถูกต้อง เพราะสมการนี้ดุลแล้ว

ข้อควรจำ ในสมการเคมีที่ดุลแล้วนี้จะมี จำนวนอะตอม โมลอะตอม และมวลสารตั้งต้นเท่ากับของสารผลิตภัณฑ์เสมอ ส่วนจำนวนโมเลกุลหรือจำนวนโมลโมเลกุล หรือปริมาตรของสารตั้งต้นอาจเท่ากันหรือ ไม่เท่าหรือสารผลิตภัณฑ์ก็ได้(ส่วนใหญ่ไม่เท่ากัน)

ในการเขียนสมการเคมี ถ้าให้สมบูรณ์ยิ่งขึ้น ควรบอกสถานะของสารแต่ล่ะชนิดด้วยคือถ้าเป็นของแข็ง (solid) ใช้ตัวอักษรย่อว่า “s” ถ้าเป็นของเหลว (liquid) ใช้อักษรย่อว่า “l” เป็นก๊าซ (gas) ใช้อักษรย่อว่า “g” และถ้าเป็นสารละลายในน้ำ (aqueous) ใช้อักษรย่อว่า “aq” เช่น

CaC2(s) + 2H2O(g) —-> Ca(OH)2(aq) + C2H2(g)

7.การเขียนสมการบางครั้งจะแสดงพลังงานขอปฏิกิริยาเคมีด้วยเช่น

2NH3(g) + 93(g) —-> N2(g) + 3H2(g) ปฏิกิริยาดูดพลังงาน = 93 kJ

 

CH4(g) + 2O2 —-> CO2(g) + 2H2O(l) + 889.5 kJ ปฏิกิริยาคายพลังงาน = 889.5

 

พิจารณาลักษณะของอะตอมของธาตุในสารตั้งต้นหรือในธาตุของผลิตภัณฑ์แล้ววิเคราะห์ลักษณะของการเปลี่ยนแปลง สูตรของสารตั้งต้นมาเป็นสูตรของผลิตภัณฑ์ อาจจำแนกประเภทของปฎิกิริยาเคมีได้เป็น 3 ประเภท ดังนี้

ปฎิกิริยาการรวมตัว (Combination)

 

ปฎิกิริยารวมตัวเกิดจากสารโมเลกุลเล็กกว่ารวมกันเป็นโมเลกุลใหญ่ หรือเกิดจากธาตุทำปฎิกิริยากับธาตุได้สารประกอบ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 1 แก๊ซ H2 รวมกับแก๊ซ O2 ได้น้ำ (H2O)

2H2(g) + O2(g) —-> 2H2O(l)

ตัวอย่างที่ 2 2Al(s) + 3Cl2(g) —-> 2AlCl3

 

2.ปฎิกิริยาการแยกสลาย (Decomposition)

 

ปฎิกิริยาการแยกสลายเกิดจากสารโมเลกุลใหญ่แยกสลายให้สารโมเลกุลเล็กๆ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 1 แยกน้ำด้วยกระแสไฟฟ้าให้แก๊ซ O2 และ H2

2H2O(l) —-> 2H2(g) + O2(g)

ตัวอย่างที่ 2 เผาหินปูนด้วยแคลเซียมคาร์บอนเนต (CaCO3) จะได้แคลเซียมออกไซต์ (CaO)

และแก๊สคาร์บอนได้ออกไซต์ (CO2)

เผา

CaCO3(s) —-> CaO(s) + CO2(g)

 

3.ปฎิกิริยาการแทนที่ (Replacement)

 

ปฎิกิริยาการแทนที่เป็นปฏิกิริยาที่สารหนึ่งเข้าไปแทนที่สารในอีกสารหนึ่ง

เช่น Zn(s) + CuSO 4 —-> ZnSO 4 + Cu

4.)ปฏิกิริยาการแลกเปลี่ยน  มีหลายประเภทเช่น

ปฏิกิริยาตะกอน เป็นปฏิกิริยาแลกเปลี่ยนชนิดหนื่งที่เมื่อแยกเขียนเป็นสมการไออนิคจะพบว่ามีการตกตะกอนเช่น

Ba(CN)2(aq) + Na2CO3(aq)                      BaCO3(s) + 2NaCN(aq)

Pb(NO3)2(aq) + 2KI (aq)                       PbI2(s) + KNO3 (aq)

 

ปฏิกิริยาสะเทิน (Neutralization Reaction) เป็นปฏิกิริยาแลกเปลี่ยนประเภทหนึ่ง เกิดกับปฏิกิริยาระหว่างกรดกับเบส ได้เกลือกันน้ำ เช่น

HCl(aq) +NaOH(aq)                              NaCla(q) +  H2O()

ปฏิกิริยาการเกิดแก๊ส (Gas Forming Reaction) เป็นปฏิกิริยาเคมี ที่เกิดผลิตภัณฑ์เป็นแก๊สสารตั้งต้น มักเป็นปฏิกิริยาการแลกเปลี่ยนระหว่างกรดหรือเบสกับสารเคมีอื่น

ปฏิกิริยารีดอกซ์ (Redox Reaction) เป็นปฏิกิริยาที่มีการถ่ายโอนอิเล็กตรอนกันหรือเป็นปฏิกิริยาที่มีการเปลี่ยนเลขออกซิเดชันของธาตุทั้งเพิ่มและลดในปฏิกิริยาเดียวกัน

 

 

EX     ในการสันดาปของเอมิลแอลกอฮอล์(C5H11OH) ดังนี้

2C5H11OH(g) + 15O2(g)                            10CO2(g) + 12H2O(g)

ก.จงหาจำนวนโมลของก๊าซออกซิเจนที่ต้องใช้ในการสันดาปกับ 1 โมลของเอมิลแอลกอฮอล์

วิธีทำ  ก. 2C5H11OH(g) + 15O2(g)                       10CO2(g) + 12H2O(g)

วิธีทำที่ 1 จากสมการ C5H11OH 2 โมล  ?O2 =15 โมล

C5H11OH 1 โมล  ?O2 =   (15 mol?1mol)/2mol 7.5 โมล

 

วิธีที่ 2 molของC5H11OH/(mol ของ O2)   =    2/?(15@)

 

(1 mol)/(mol O2)     =         2/15

โมลของ O2             = 15/2  โมล  = 7.5 โมล

ข.จงหามวลของก๊าซคาร์บอนไดออกไซด์ที่เกิดขึ้นจากการใช้เอมิลแอลกอฮอล์มากเกินพอ แล้วเกิดก๊าซคาร์บอนไดออกไซด์ 22 กรัม

ข.2C5H11OH(g) + 15O2(g)                                   10CO2(g) + 12H2O(g)

วิธีทำที่ 1. จากสมการ CO2 10 mol มาจาก O2 =15 mol

CO2 10 ?44 g มาจาก O2 =15?22.4 dm3 STP

CO2  22 g มาจาก O2     = (15?22.4?22g)/(10?44g)=  16.8 dm3

 

 

 

วิธีที่ 2. ให้ O2  มีปริมาตร = x dm 3 STP มีจำนวน  x/22.4   mol

CO2  22  g   มีจำนวน  =   22/44   = 1/2 mol

 

(mol O2)/(mol CO2  )   =      15/10

x/22.4                =            15/10

1/2 mol

 

?  X    =  15/10?1/2?22.4  = 16.8  dm3

 

ปริมาตรของ O2 ที่  STP   =   16.8  dm3

 

EX   นำผลึกโซเดียมฟอสเฟต  (Na3PO4 .xH2O) หนัก  3.615 g มาเผามวลสูญหายไป  2.055 g เมื่อเผาแล้วให้เหลือเกลือที่ปราศจากน้ำ จงหาค่า x ในสูตพิมพ์สมการที่นี่รของผลึกนั้ (มวลอะตอมของ H  =  1,O = 16,Na = 23,P =31 )

วิธีทำ  Na3PO4.xH2 O(s)        ?(?? )             Na3PO4(s) + xH2 O(g)

มวลโมเลกุลของ  Na3PO4.xH2O  =   (164 + 18x)

จากสมการ     Na3PO4.xH2O       1   mol   เผาแล้วเกิด  H2O  =  x mol

Na3PO4.xH2O    (164 + 18x) g  เผาแล้วเกิด  H2O  = x ?18 g

Na3PO4.xH2O    3.615 g   เผาแล้วเกิด  H2O  =  (18?g?3.615g)/(164+18x)g

 

 

มวลของ H2O หนัก       =      65.07x/((164+18x)) g

 

? X    =   12.00

EX    แร่ชนิดหนึ่งมี ZnS 79.55% นำแร่ชนิดนี้หนัก 445 g ไปทำปฏิกิริยากับก๊าซออกซิเจนจนสมบรูณ์ดังสมการ                                                      2ZnS + 3O2                     2ZnO  +  2SO2

จงหาของก๊าซ O2ที่ต้องใช้ทั้งหมด และหาปริมาตรของก๊าซ SO2 ที่  STP

(มวลอะตอมของ O  = 16, S  = 32, Zn  =  65.39)

วิธีทำ                 2ZnS +  3O2                    2Zn(s)  +  2SO2

แร่  100 g มี ZnS  =  79.5 g

แร่  100 g มี ZnS  =  79.5 g ?445  g   =  353.78 g

100 g

จากสมการ            ZnS     2   mol    =   O2   =   3  mol

ZnS 2 ? 97.39 g   =  O2   =   3 ?32  g

ZnS  353.78  g   =   O2   =   (3?32g?353.78g)/(2?97.38g)  =  174.38  g

 

?มวลของก๊าซ O2   =  174.38  g

จากสมการ                 ZnS  2?97.39  g  เกิด  SO2  =  2?22.4  dm3

ZnS  353.78  g  เกิด  SO2     =  (2?22.4dm3?353.78g)/(2?97.39g)

มวลของก๊าซ  SO2  =  81.37 dm3  STP

 

 

 

EX  การหมักเป็นกระบวนการทางเคมีอย่างซับซ้อนในการทำไวน์ โยการใช้น้ำตาลหมักให้เปลี่ยนเป็นเอทานอลและก๊าซคาร์บอนไดออกไซด์

C6H12O6                   2C2H5OH  +  2CO2

เริ่มต้นใช้กลูโคส  500.4 g จงหาปริมาตรของเอทานอลที่เกิดขึ้นจากกระบวนการนี้

(ความหนาแน่นของเอทานอล  =0.789 g/ml, มวลอะตอมของ H  =  1,C  =  12, O  =  16)

วิธีทำ                 C6H12O6                              2C2H5OH  +  2CO2

จากสมการ        C6H12O6   1   mol  C2H5 OH   =   2   mol

C6H12O6   180  g  C2H5OH     =   2?46  g

C16H12O6  500.4  g   C2H5OH   =  (2?46g?50.4)/180g

180  g

มวลของเอทานอล                           =  255.79  g

แต่สูตร  d                                        =  M/V

แทนค่า ; 0.789 g/ml                        =  255.76g/V

V                                 =   255.76g/(0.789g/ml)   =  324.16  ml

 

ปริมาตรของเอทานอล               =  324.16  ml

แหล่งอ้างอิง    http://ecurriculum.mv.ac.th/science/m2/sci2_3/index.htm

คู่มือเตรียมสอบ  เคมี  2  ว 036

เคมี  เล่ม 2  ม.4

สารประกอปเเละธาตุ

ธาตุ

ธาตุและสารประกอบ

                ในภาวะปกติ ธาตุบางชนิดดำรงอยู่สถานะของแข็ง บางชนิดเป็นของเหลว และบางชนิดเป็นก๊าซ เราแบ่งธาตุทั้งหมดออกได้เป็นสามพวกใหญ่ ๆ คือ โลหะ อโลหะ และกึ่งโลหะ ตัวอย่าง โลหะและอโลหะที่เราพอรู้จักกันคือ

โลหะ

อโลหะ

ทองคำ
เงิน
เหล็ก
ปรอท
ตะกั่ว
สังกะสี
อะลูมิเนียม
โซเดียม
แมกนีเซียม

( ของแข็ง)
( ของแข็ง)
( ของแข็ง)
( ของเหลว)
( ของแข็ง)
( ของแข็ง)
( ของแข็ง)
( ของแข็ง)
( ของแข็ง)

ไฮโดรเจน
ไนโตรเจน
ออกซิเจน
คลอรีน
โบรมีน
ไอโอดีน
กำมะถัน
อาร์กอน
คาร์บอน

( ก๊าซ)
( ก๊าซ)
( ก๊าซ)
( ก๊าซ)
(ของเหลว)
(ของแข็ง)
( ของแข็ง)
( ก๊าซ)
( ของแข็ง)

 

สมบัติอื่น ๆ บางประการของธาตุบางชนิด

ธาตุ

ความมันวาว

การนำความร้อน

การนำไฟฟ้า

ความเหนียว

Al

เป็นมันวาว

นำได้ดี

นำได้ดี

เหนียว

Mg

เป็นมันวาว

นำได้ดี

นำได้ดี

เหนียว

C( แกรไฟต์)

ไม่มันวาว

นำได้ดี

นำได้ดี

เปราะ

S

ไม่มันวาว

ไม่นำ

ไม่นำ

เปราะ

P

ไม่มันวาว

ไม่นำ

ไม่นำ

เปราะ

               การที่เราจำแนกธาตุทั้งหลายออกเป็นโลหะกับอโลหะ ก็เนื่องจากธาตุต่าง ๆ แม้จะมีสมบัติเฉพาะตัวแตกต่างกัน แต่ก็มีสมบัติบางประการเหมือนกันหรือคล้ายกัน พอจะแยกออกได้เป็น 2 พวก คือ

ตาราง การเปรียบเทียบสมบัติของโลหะและอโลหะ

สมบัติ

โลหะ

อโลหะ

1. สถานะ

เป็นของแข็งในสภาวะปกติ ยกเว้นปรอทซึ่งเป็นของเหลว มีอยู่ได้ทั้ง 3 สถานะ ธาตุที่เป็นก๊าซในภาวะปกติเป็นอะโลหะ

2. ความมันวาว

มีวาวโลหะ ขัดขึ้นเงาได้ ส่วนมากไม่มีวาวโลหะ ยกเว้น แกรไฟต์ และเกล็ดไอโอดีน

3. การนำไฟฟ้าและน้ำความร้อน

นำไฟฟ้าและนำความร้อนได้ดี เช่น สายๆฟฟ้ามักทำด้วยทองแดง นำไฟฟ้าและนำความร้อนไม่ได้ยกเว้นแกรไฟต์ นำไฟฟ้าได้ดี

4. ความเหนียว

ส่วนมากเหนียว ดึงยืดเป็นเส้นลวด หรือตีเป็นแผ่นบ่าง ๆ ได้ อโลหะที่เป็นของแข็ง มีเปราะดึงยืดออกเป็นเส้นลวดหรือตีเป็นแผ่นบาง ๆ ไม่ได้

5. ความหนาแน่น หรือความถ่วงจำเพาะ (ถ. พ. )

ส่วนมากมีความหนาแน่น หรือ ถ . พ. สูง มีความหนาแน่น หรือ ถ . พ. ต่ำ

6. จุดเดือนและจุดหลอดเหลว

ส่วนมากสูงเช่น เหล็ก มีจุดหลอดเหลว 1,536 OC จุดเดือด 3,000 OC ยกเว้นปรอท ซึ่งมีจุดหลอดเหลวต่ำเพียง -39 OC ส่วนมากต่ำโดยเฉพาะพวกอโลหะที่เป็นก๊าซ เช่น ออกซิเจน มีจุดเดือด -183 OC จุดเยือกแข็ง ( จุดหลอดเหลว) -219 OC กำมะถันมีจุดหลอดเหลว 113 OC จุดเดือด 444 OC เป็นต้น

7. การเกิดเสียงเมื่อเคาะ

มีเสียงดังกังวาน ไม่มีเสียงดังกังวาน

8. เกี่ยวกับอิเล็กตรอนและประจุไอออน

เป็นพวกชอบให้อิเล็กตรอน ทำให้เกิดเป็นไอออนบวก เป็นพวกชอบรับอิเล็กตรอน ทำให้เกิดเป็นไอออนลบ

9. การ เกิดสารประกอบ

เกิดสารประกอบ เช่น ออกไซด์ คลอไรด์ ซัลไฟด์ และไฮไดร์ได้ เกิดสารประกอบ เช่น ออกไซด์ คลอไรด์ ซัลไฟด์ และไฮไดร์ได้

10. สารประกอบออกไซด์

โลหะออกไซด์เป็นเบส อโลหะออกไซด์เป็นกรด

              ส่วนพวกกึ่งโลหะ หมายถึง ธาตุที่มีสมบัติกึ่งโลหะและอโลหะ เช่น ธาตุซิลิคอน มีสมบัติบางประการคล้ายโลหะ เช่น นำไฟฟ้าได้บ้างที่อุณหภูมิปกติ และนำไฟฟ้าได้มากขึ้นเมื่ออุณหภูมิเพิ่มขึ้น เป็นของแข็ง เป็นมันวาวสีเงิน จุดเดือดสูง แต่เปราะแตกง่าย คล้ายอโลหะ

 

โลหะทรานซิชัน

          โลหะทรานซิชันบรรจุไว้ตรงกลางของตารางธาตุ โลหะทรานซิชันที่รู้จักกันดี คือ เหล็ก ทองแดง สังกะสี โครเมียม นิกเกิล และทองคำ โลหะทรานซิชัน มีทั้งหมด 8 หมู่ แต่หมู่ 8 มีทั้งหมด 3 หมู่ย่อย จึงมีธาตุต่างๆ รวม 10 หมู่ และมีทั้งหมด 4 คาบ ดังรูป

สมบัติทางกายภาพ

  • โลหะทรานซิชันมีสมบัติแข็ง หนัก เป็นตัวนำความร้อนและไฟฟ้าที่ดี เป็นประกายวาว จุดเดือดและจุดหลอมเหลวสูง ซึ่งถือได้ว่าเป็นแบบฉบับของโลหะ (ดูเรื่องสมบัติของโลหะ)
  • เหล็ก นิกเกิล และโคบอลต์ เป็นโลหะที่เป็นแม่เหล็ก
  • โลหะทรานซิชันใช้ผสมกับโลหะอื่นได้โลหะผสม (โลหะอัลลอยด์)

สมบัติทางเคมี

  • โลหะทรานซิชันว่องไวต่อการเกิดปฏิกิริยาน้อยกว่าโลหะหมู่ 1 และโลหะหมู่ 2
  • โลหะทรานซิชันมีเลขออกซิเดชันได้หลายค่า เช่น Fe มีเลขออกซิเดชัน = +3 และ +2 และ Cu มีเลขออกซิเดชัน = +2 และ +1 เป็นต้น
  • โลหะทรานซิชันหลายชนิดเป็นตัวเร่งปฏิกิริยาที่ดี เช่น ในอุตสาหกรรมการผลิตแอมโมเนีย ใช้เหล็กเป็นตัวเร่งปฏิกิริยา การผลิดกรดซัลฟูริก ใช้ วาเนเดียม (v) ออกไซด์เป็นตัวเร่งปฏิกิริยา
  • สารประกอบและไอออนของโลหะทรานซิชันมักมีสี เช่น CuCl 2 มีสีเขียวเข้ม FeCl 3 มีสีส้ม CuSO 4 มีสีฟ้า MnSO 4 มีสีชมพู เป็นต้น

 

ธาตุกัมมันตรังสี

ธาตุกัมมันตรังสี หมายถึง ธาตุที่แผ่รังสีได้ เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า 82

กัมมันตภาพรังสี หมายถึง ปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว มี 3 ชนิด คือ รังสีแอลฟา รังสีเบต้า และรังสีแกมมา

ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่งมีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ เช่น

(ธาตุยูเรเนียม)…………. (ธาตุทอเลียม) (อนุภาคแอลฟา)

จะเห็นได้ว่าการแผ่รังสีจะทำให้เกิดธาตุใหม่ได้ หรืออาจเป็นธาตุเดิมแต่จำนวนโปรตอนหรือนิวตรอนอาจไม่เท่ากับธาตุเดิม และธาตุกัมมันตรังสีแต่ละธาตุ มีระยะเวลาในการสลายตัวแตกต่างกันและแผ่รังสีได้แตกต่างกัน โดย มวลจำนวนหนึ่งของธาตุ จะลดลงเหลือครึ่งหนึ่งของมันที่มีอยู่เดิม เมื่อเวลาผ่านไป เรียกว่า ครึ่งชีวิตของธาตุ ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้

 

สูตรคำนวณหา ครึ่งชีวิตของธาตุ

กำหนดให้ N คือ มวลของธาตุที่เหลืออยู่
N 0 คือ มวลของธาตุที่มีอยู่เดิม
t คือ เวลาที่ผ่านไปที่เกิดการสลายตัว
t 0 คือ เวลา ครึ่งชีวิตของแต่ละธาตุ

 

รังสีที่ทำให้เกิดการแตกของประจุ ( Ionizing Radiation )

  • รังสีแอลฟา อะตอมใหม่จะมี เลขอะตอมลดลง 2 เลขมวลลดลง 4 อนุภาคแอลฟา มีอำนาจทะลุทะลวงต่ำเพียงแค่กระดาษ อากาศที่หนาประมาณ 2- 3 cm น้ำที่หนาขนาดมิลลิเมตร หรือโลหะบางๆ ก็สามารถกั้นอนุภาคแอลฟาได้
  • รังสีของอนุภาคโพซิตรอน มีสมบัติเช่นเดียวกับอนุภาคบีตา ต่างกันที่โพซิตรอนมีประจุบวกและไม่เสถียร การแผ่รังสีของอนุภาคโพซิตรอนนิวเคลียสจะมีจำนวนโปรตอนมากกว่านิวตรอน เมื่อเทียบจากไอโซโทปที่เสถียรของธาตุเดียวกัน
  • รังสีเบต้า มีสมบัติเหมือนอิเล็กตรอน คือ ประจุเป็น –1 มวลเท่ากับมวลของอิเล็กตรอน มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า และมีความเร็วใกล้เคียงกับความเร็วแสง
  • รังสีแกมมา เป็นรังสีที่มีพลังงานสูง ไม่มีประจุ ไม่มีมวล เป็นรังสีแม่เหล็กไฟฟ้ามีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง
  • สัญลักษณะของอนุภาคต่าง ๆ ( ต้องจำ) เช่น เบต้า b ( )   แอลฟา a ( ) แกมมา g โปรสิตรอน ( ) โปรตอน ( ) และนิวตรอน ( )

ประเภทของปฏิกิริยานิวเคลียร์ 

การเกิดปฏิกิริยาของธาตุกัมมันตรังสี เรียกว่า ปฏิกิริยานิวเคลียร์ ซึ่งมี 2 ประเภท คือ

1. ปฏิกิริยาฟิวชัน (Fussion reaction) คือ ปฏิกิริยานิวเคลียร์ที่นิวเคลียสของธาตุเบาหลอมรวมกันเข้าเป็นนิวเคลียสที่หนักกว่า และมีการคายความร้อนออกมาจำนวนมหาศาลและมากกว่าปฏิกิริยาฟิชชันเสียอีก ดังภาพ ปฏิกิริยาฟิวชันที่รู้จักกันดี คือ ปฏิกิริยาระเบิดไฮโดรเจน (Hydrogen bomb)

2. ปฏิกิริยาฟิชชัน (Fission reaction) คือปฏิกิริยานิวเคลียร์ที่เกิดขึ้น เนื่องจากการยิงอนุภาคนิวตรอนเข้าไปยังนิวเคลียสของธาตุหนัก แล้วทำให้นิวเคลียร์แตกออกเป็นนิวเคลียร์ที่เล็กลงสองส่วนกับให้อนุภาคนิวตรอน 2-3 อนุภาค และคายพลังงานมหาศาลออกมา ดังภาพ ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรงที่เรียกว่า ลูกระเบิดปรมาณู (Atomic bomb) เพื่อควบคุมปฏิกิริยาลูกโซ่ไม่ให้เกิดรุนแรง นักวิทยาศาสตร์จึงได้สร้างเตาปฏิกรณ์ปรมาณู ซึ่งสามารถนำไปใช้ผลิตกระแสไฟฟ้าได้

ประโยชน์ของธาตุกัมมันตรังส

1.  ทำเตาปฏิกรณ์ปรมาณู ทำโรงงานไฟฟ้าพลังงานปรมาณู และเรือดำน้ำปรมาณู
2.  ใช้สร้างธาตุใหม่หลังยูเรเนียม สร้างขึ้นโดยยิ่งนิวเคลียสของธาตุหนักด้วยอนุภาคแอลฟา หรือด้วยนิวเคลียสอื่นๆ ที่ค่อนข้างหนัก และมีพลังงานสูง
3.  ใช้ศึกษากลไกของปฏิกิริยาเคมี เช่น การเกิดปฏิกิริยาของเอสเทอร์
4.  ใช้ในการหาปริมาณวิเคราะห์
5.  ใช้ในการหาอายุของซากสิ่งมีชีวิต (C – 14)
6.  การรักษาโรค เช่น มะเร็ง (Ra – 226)
7. ใช้ในการถนอมอาหารให้อยู่ได้นานๆ ( Co-60)
8. ใช้ ศึกษาความต้องการปุ๋ยของพืช และปรับปรุงเมล็ดพันธุ์ที่ต้องการ (P – 32)

โทษของธาตุกัมมันตรังสี

ถ้าร่างกายได้รับจะทำให้โมเลกุลภายในเซลล์เกิดการเปลี่ยนแปลงไม่สามารถทำงานตามปกติได้ ถ้าเป็นเซลล์ที่เกี่ยวข้องกับการถ่ายทอดลักษณะพันธุกรรมก็จะเกิดการผ่าเหล่า โดยเฉพาะเซลล์สืบพันธุ์ เมื่อเข้าไปในร่างกายจะไปสะสมในกระดูก ส่วนผลที่ทำให้เกิดความป่วยไข้จากรังสี เมื่ออวัยวะส่วนใดส่วนหนึ่งของร่างกายได้รับรังสี โมเลกุลของธาตุต่างๆ ที่ประกอบเป็นเซลล์จะแตกตัว ทำให้เกิดอาการป่วยไข้และเกิดมะเร็งได้

ตารางแสดง ธาตุไอโซโทป

ธาตุ/ไอโซโทป

ครึ่งชีวิต

แบบการสลายตัว

ประโยชน์

Tc -99

6 ชั่วโมง

C-14

5,760 ปี

เบต้า

หาอายุวัตถุโบราณ

Co-60

5.26 ปี

แกมมา

รักษามะเร็ง

Au-198

2.7 วัน

เบต้า แกมมา

วินิจฉัยตับ

I-125

60 วัน

แกมมา

หาปริมาณเลือด

I-131

8.07 วัน

เบตา แกมมา

วินิจฉัยอวัยวะ

P-32

14.3 วัน

เบต้า

รักษามะเร็ง

Pu-239

24,000 ปี

อัลฟา   แกมมา

พลังงาน

K-40

1 x10 9 ปี

เบต้า

หาอายุหิน

U-238

4.5×10 9 ปี

อัลฟา   แกมมา

วัตถุเริมต้นให้ Pu-239

U-235

7.1×10 9 ปี

อัลฟา   แกมมา

รักษามะเร็ง

Cl-36

4×10 5 ปี

Po-216

0.16 วินาที

Ra-226

1,600 ปี

อัลฟา   แกมมา

รักษามะเร็ง

Na-24

15 ชั่วโมง

ตารางแสดง ปริมาณและผลของรังสี

ปริมาณรังสีที่รับ

ผลของรังสีที่ได้รับต่อสุขภาพ

4 มิลลิเร็ม เดินทางไปกลับด้วยเครื่องบิน นิวยอร์ค-ลอนดอน
20 มิลลิเร็ม x -ray ปอด 1 ครั้ง
30-50 มิลลิเร็ม/ต่อปี อยู่ในบ้านไม้
50-100 มิลลิเร็ม/ต่อปี อยู่ในบ้านอิฐ
70-100 มิลลิเร็ม/ต่อปี อยู่ในบ้านปูน(คอนกรีต)
170 มิลลิเร็ม/ต่อปี ตายด้วยโรคมะเร็ง 1 ใน 250,000 คน
500 มิลลิเร็ม/ต่อปี ค่ามาตรฐานที่นานาชาติยอมรับได้สำหรับประชาชน ทั่ว ๆไป
5000 มิลลิเร็ม/ต่อปี ค่ามาตรฐานที่นานาชาติยอมรับได้สำหรับเจ้าหน้าที่ใน อุตสาหกรรมนิวเคลียร์
25 เร็ม มีเลือดขาวต่ำกว่าปกติเล็กน้อย
50 เร็ม เกิดมีรอยแผลของผิวหนัง เม็ดเลือดขาวต่ำชัดเจนขึ้น
100 เร็ม คลื่นไส้อาเจียนผมร่วงมีอัตราการเสี่ยงต่อโรคมะเร็งในระยะยาว
200-600 เร็ม เลือดขาวต่ำอย่างรุนแรง มีเลือดออกในร่างกาย มีโอกาสเสียชีวิต 50 %
600-1000 เร็ม เม็ดเลือดขาวถูกทำลายโดยสิ้นเชิง ระบบทำงานของลำไส้ถูกทำลาย มีโอกาสเสียชีวิต 80-100%
มากกว่า 1000 เร็ม เสียชีวิตใน 1-14 วัน

การจัดตำแหน่งไฮโดรเจนในตารางธาตุ

การจัดธาตุให้อยุ่ในหมู่ใดของตารางธาตุจะใช้สมบัติที่คล้ายกันเป็นเกณฑ์ ในตารางธาตุปัจจุบันได้จัดให้ธาตุไฮโดรเจนอยู่ในคาบที่ 1 ระหว่างหมู่ 1 กับหมู่ 7 เพราะเหตุใดจึงเป็นเช่นนั้น ให้ศึกษาสมบัติบางประการของธาตุไฮโดรเจนเปรียบเทียบกับสมบัติธาตุหมู่ 1 และหมู่ 7

ตารางสมบัติของประการของธาตุไฮโดรเจนกับธาตุหมู1 กับหมู่ 7

สมบัติ

ธาตุหมู่ 1

ธาตุไฮโดรเจน

ธาตุหมู่ 7

จำนวนเวเลนต์อิเล็กตรอน
1
1
7
เลขออกซิเดซันในสารประกอบ
+1
+1 และ -1
+1 +3 +5 +7 – 1
ค่า IE
382-526
1318
1015 – 1687
อิเล็กโทรเนกาทิวิตี
1.0-0.7
2.1
1015 – 1687
สถานะ
ของแข็ง
ก๊าซ
ก๊าซ /ของเหลว/ของแข็ง
การนำฟ้า
นำ
ไม่นำ
ไม่นำ

 

เมื่อพิจารณาข้อมูลในตาราง พบว่าไฮโดรเจนมีเวเลนซ์อิเล็กตรอน 1 และมีเลขออกซิเดชัน +1 ไฮโดรเจนจึงควรอยู่ในหมู่ 1 คาบที่ 1 แต่ไฮโดรเจนมีสมบัติคล้ายธาตุหมู่ 7 หลายประการคือ มีเลขออกซิเดชันได้มากกว่าหนึ่งค่า มีพลังงานไอออไนเซชันลำดับที่ 1 และอิเล็กโทรเนกาติวิตีสูง มีสถานะเป็นก๊าซ ไม่นำไฟฟ้า เมื่อเกิดเป็นสารประกอบต้องการเพียง 1 อิเล็กตรอนก็จะมีการจัดอิเล็กตรอนเช่นเดียวกับฮีเลียมซึ่งเป็นธาตุในหมู่ 7 คาบที่ 1 อยู่ระหว่างหมู่ 1 กับ 7 ดังปรากฏในตารางธาตุ

 

สารประกอบออกไซด์

สารประกอบออกไซดหมายถึง สารประกอบที่เกิดจากธาตุออกซิเจนรวมกับธาตุอื่น ๆ ซึ่งอาจจะเป็นโลหะหรืออโลหะก็ได้ เช่น Na 2O, P 2O 3, NO 2

การเตรียมสารประกอบออกไซด์ อาจจะทำได้โดยนำออกซิเจนมาเผารวมกับธาตุต่าง ๆ เช่น

4Na (s) + O 2 (g) ————–> 2Na 2O (s)

2Ca(s) + O 2 (g) ————–> 2CaO (s)

4Al(s) + O 2 (g) —————> 2Al 2O 3 (s)

C(s) + O 2 (g) ————–> CO 2 (g)

สมบัติบางประการของสารประกอบออกไซด

จากการศึกษาสมบัติบางประการของสารประกอบออกไซด์ของ 20 ธาตุแรก เกี่ยวกับสูตรของสารประกอบ จุดหลอมเหลว สถานะ การละลายน้ำ และความเป็นกรด – เบสของสารละลายได้ผลสรุปดังนี้

1. เมื่อใช้ความเป็นโลหะและอโลหะเป็นเกณฑ์ จะแบ่งสารออกได้เป็น 2 กลุ่มดังนี้

ก . ออกไซด์ของโลหะ เช่น Li 2O BeO Na 2O MgO Al 2O 3 K 2O CaO
ข . ออกไซด์ของอโลหะ เช่น H 2O CO 2 N 2O 5 F 2O P 2O 5 SO 2 Cl 2O

2. การแบ่งกลุ่มย่อยอาจจะใช้สมบัติความเป็นกรด – เบสของสารละลาย เช่น

ก . ออกไซด์ของโลหะ

– สารละลายเป็นกรด –
– สารละลายเป็นเบส ได้แก่ Li 2O Na 2O MgO K 2O และ CaO
– สารละลายเป็นกลาง ได้แก่ –
– พวกไม่ละลายน้ำ ได้แก่ BeO Al 2O 3 B 2O 3 SiO 2

ข . ออกไซด์ของอโลหะ

– สารละลายเป็นกรด ได้แก่ CO 2 N 2O 5 F 2O P 2O 5 SO 2 และ Cl 2O
– สารละลายเป็นเบส ได้แก่ –
– สารละลายเป็นกลาง ได้แก่ H 2O
– พวกไม่ละลายน้ำ ได้แก่ –

4. เมื่อใช้จุดหลอมเหลวเป็นเกณฑ์จะได้กลุ่มย่อยดังนี้

ออกไซด์ที่เป็นของแข็ง
และมีจุดหลอมเหลวสูง

ออกไซด์ที่เป็นของแข็งและ
มีจุดหลอมเหลวค่อนข้างสูง

ออกไซด์ที่เป็นของเหลวหรือ
ก๊าซและมีจุดหลอมเหลวต่ำ

สูตร

จุดหลอมเหลว (0C)

สูตร

จุดหลอมเหลว (0C)

สูตร

จุดหลอมเหลว (0C)

Li 2O

1700

K 2O

350

H 2O(l)

0

Na 2O

1275

B 2O 3

460

CO 2(g)

-57

BeO

2530

P 2O 5

580

N 2O 5(g)

-102

MgO

2800

F 2O(g)

-218

CaO

2580

P 2O 5(g)

-224

Al 2O 3

2045

SO 2(g)

-73

Cl 2O(g)

-20

โดยสรุป

ก . ออกไซด์ของโลหะ มีสถานะเป็นของแข็งที่มีจุดหลอมเหลวค่อนข้างสูง พวกที่ละลายน้ำได้สารละลายจะแสดงสมบัติเป็นเบส เปลี่ยนสีกระดาษลิตมัสจากแดงเป็นน้ำเงิน
ข . ออกไซด์ของอโลหะ มีสถานะเป็นได้ทั้งของแข็ง ของเหลวและก๊าซ ส่วนมากมีจุดหลอมเหลวค่อนข้างต่ำพวกที่ละลายน้ำได้สารละลายจะแสดงสมบัติเป็นกรด

เมื่อนำสารประกอบออกไซด์มาจัดเรียงเป็นหมวดหมู่เดียวกันตามตารางธาตุ จะได้ดังนี้

สารประกอบคลอไรด์

สารประกอบคลอไรด์ หมายถึง สารประกอบธาตุคู่ระหว่างธาตุคลอรีนกับธาตุอื่นๆ เช่น NaCl CaCl 2 HCl และ CCl 4 เป็นต้น

สารประกอบคลอไรด์สามารถเตรียมได้โดยตรง โดยผ่านก๊าซคลอรีนแห้งไปบนธาตุที่กำลังร้อน ดังนั้นในขั้นแรกจึงต้องเตรียมก๊าซคลอรีนก่อนแล้วจึงผ่านก๊าซคลอรีนที่ได้นั้นลงไปบนธาตุที่ร้อนดังกล่าว

การเตรียมก๊าซคลอรีนในห้องปฏิบัติการ ใช้ปฏิกิริยาระหว่างโปตัสเซียมเพอร์แมงกาเนต (KMnO 4) กับก๊าซไฮโดรคลอริก(HCl) เข้มข้นประมาณ 10 mol/dm 3 ซึ่งเกิดปฏิกิริยาต่อไปนี้

KMnO 4 (s) + 16 HCl (aq) —–> 2KCl (aq) + 2MnCl 2 (aq) + 8H 2 (l) + 5Cl 2 (g)

หมายเหตุ ก๊าซคลอรีนเป็นก๊าซพิษ ดังนั้นการเตรียมจึงต้องทำอย่างระมัดระวัง

สมบัติของสารประกอบคลอไรด์

1. การแตกตัวเป็นไอออนทดสอบได้โดยใช้สารละลาย AgNO 3 ซึ่งถ้ามีCl – จะเกิดตะกอนของ AgCl จัดว่าเป็นวิธีทดสอบคลอไรด์ไอออนวิธีหนึ่ง จากสมการดังต่อไปนี้

Ag +(aq) + Cl – (aq) ——-> AgCl (s)

2. แบ่งสารประกอบคลอไรด์ออกเป็น 2 กลุ่มใหญ่ๆ คือ คลอไรด์ของโลหะและคลอไรด์ของอโลหะดังนี้

ก . คลอไรด์ของโลหะ ได้แก่ LiCl BeCl 2 NaCl MgCl 2 AlCl 3 KCl และ CaCl 2
ข . คลอไรด์ของอโลหะ ได้แก่ HCl   BCl 3  CCl 4  NCl 3   Cl 2O  ClF   PCl 5   SiCl 4 และ SCl 2

3. เมื่อใช้ความเป็นกรด – เบสของสารละลาย จะแบ่งกลุ่มย่อยได้ดังนี้

ก . คลอไรด์ของโลหะ

– สารละลายเป็นกรด ได้แก่ AlCl 3   BeCl 2
– สารละลายเป็นกลาง ได้แก่ LiCl   NaCl   MgCl 2   KCl และ CaCl 2
– สารละลายเป็นเบส –

ข . คลอไรด์ของอโลหะ

– สารละลายเป็นกรด ได้แก่ HCl   BCl 3   Cl 2O   ClF   PCl 5   SiCl 4 และ SCl 2
– สารละลายเป็นกลาง ได้แก่ –
– สารละลายเป็นเบส ได้แก่ –

4. เมื่อใช้สถานะและจุดหลอมเหลว จะแบ่งกลุ่มย่อยได้ดังในตาราง

คลอไรด์ที่เป็นของแข็ง
และมีจุดหลอมเหลวสูง

คลอไรด์ที่เป็นของแข็งและ
มีจุดหลอมเหลวค่อนข้างสูง

คลอไรด์ที่เป็นของเหลวหรือก๊าซ
และมีจุดหลอมเหลวต่ำ

สูตร

จุดหลอมเหลว ( 0C)

สูตร

จุดหลอมเหลว ( 0C)

สูตร

จุดหลอมเหลว ( 0C)

LiCl

610

AlCl 3

198

SCl 2

-80

NaCl

801

PCl 5

148

CCl 4

-23

KCl

770

ClF

-154

BeCl 2

405

Cl 2O

-20

MgCl 2

712

BCl 3

-107

CaCl 2

772

NCl 3

-27

SiCl 4

-68

HCl

-114

เมื่อนำคลอไรด์มาจัดรวมกันเป็นหมวดหมู่ หมวดหมู่เดียวกันตามตารางธาตุ จะได้ดังนี้

ธาตุและสารประกอบในชีวิตประจำวัน

1. โซเดียมคลอไรด์ ( NaCl ) ใช้ปรุงรสอาหาร ถนอมอาหาร เป็นสารตั้งต้นในการผลิตโซเดียมไฮโดรเจนคาร์บอเนต (NaHCO 3 ) หรือโซดาทำขนม โซเดียมคาร์บอเนต (NaCO 3 ) หรือโซดาแอส โซเดียมไฮดรอกไซด์ (NaOH ) หรือโซดาไฟ และไฮโดรเจนคลอไรด์ (HCl ) ในต่างประเทศใช้ NaCl สำหรับละลายน้ำแข็งในหิมะ เป็นสารจำเป็นในร่างกาย คือ Na + เป็นส่วนประกอบของของเหลวในร่างกาย

2. แคลเซียมคลอไรด์ ( CaCl 2 )  ใช้เป็นสารดูดความชื้น ใช้ในเครื่องทำความเย็นในอุตสาหกรรมห้องเย็น ใช้ทำฝนเทียม

3. โพแทสเซี่ยมคลอไรด์ ( KCl ) ใช้ทำปุ๋ย

4. แอมโมเนียมคลอไรด์ ( NH 4Cl ) ใช้เป็นน้ำประสารดีบุก ใช้เป็นอิเล็กโทรไลต์เซลล์ถ่านไฟฉาย

5. โซเดียมหรือแคลเซียมคลอเรต ( NaClO 3 , Ca (ClO 3 ) 2   ใช้เป็นสารฟอกสี ฟอกขาวเยื่อกระดาษ ใช้ฆ่าแบคทีเรีย และสาหร่ายในน้ำประปา และในน้ำสระ

6. HCl    ใช้กำจัดสนิมเหล็กก่อนที่จะฉาบสารกันสนิม

7. DDT   ใช้เป็นยาฆ่าแมลง (ปัจจุบันเป็นสารต้องห้าม)

8. ฟรีออน หรือสาร CFC ใช้ทำความเย็น เป็นตัวขับดันในกระป๋องสเปรย์

9. โบรโมคลอโรไดฟลูออโรมีเทน ( BFC ) เป็นสารที่ใช้ดับเพลิงในรถยนต์    และเครื่องบิน

10. แคลเซียม ( Ca ) เป็นธาตุหมู่ 2 มีความแข็งแรงพอใช้เป็นโลหะที่มีเงาวาว เบา ถ้าถูกับไอน้ำในอากาศมันจะหมดเงาทันที ทำปฏิกิริยากับน้ำได้ไฮโดรเจน

11. แคลเซียมคาร์บอเนต ( CaCO 3 ) พบมากในธรรมชาติเกิดอยู่ในแบบของ Limestone Marble ชอล์ก หอย เปลือกหอยกาบ และไข่มุก CaCO 3 ที่บริสุทธิ์ จะมีสีขาว CaCO 3 ที่อยู่ในรูปแบบของ Marble ใช้ประโยชน์ในการก่อสร้าง แต่ถ้าอยู่ในรูป Limestone ผสม Clay แล้วให้ความร้อนจะให้ซีเมนต์

12. แคลเซียมฟอสเฟต [ Ca 3 (PO 4 ) 2] พบมากในมลรัฐฟลอริดา อยู่ในกระดูก มีประโยชน์ใช้ทำปุ๋ยซึ่งอยู่ในรูป Super phosphate

13. แคลเซียมซัลเฟต ( CaSO 4 .2H 2O ) มีอยู่ในธรรมชาติในชื่อ ยิปซัม ใช้ในการกสิกรรมเพื่อทำให้ดินดี และยังใช้ในอุตสาหกรรมทำปูนปลาสเตอร์

14. อะลูมิเนียม ( Al ) เป็นธาตุที่มีมากเป็นที่ 3 ในโลก ผู้พบอะลูมิเนียมเป็นคนแรกคือ Hans Christan Oersted อะลูมิเนียมเป็นโลหะที่สำคัญมากและยังราคาถูก ในอุตสาหกรรมใช้อะลูมิเนียมมากที่สุด โดยการผสมกับธาตุอื่นเป็นโลหะผสม (Alloys ) สารประกอบอะลูมิเนียม ได้แก่ อะลูมิเนียมออกไซด์ (Al 2O 3 ) บางทีเรียกคอรันดัม มีความแข็งมากเกือบเท่าเพชร บางที่เรียก Emery บุษราคัม Sapphire ทับทิมก็เป็นพวกอะลูมิเนียมออกไซค์ที่ไม่บริสุทธิ์

15. สารส้ม ( Al 2O 3.14H 2O) ใช้แกว่งน้ำให้ตะกอนตกลงก้นตุ่ม

16. เกาลิน หรือ ดินขาว ( H 4 Al 2 Si 2 O 9 ) ใช้ประโยชน์คือ เอาทำเครื่องเคลือบดินเผา

17. เหล็ก ( Fe ) เป็นธาตุที่มีมากเป็นที 4 ในโลก ซึ่งเหล็กนี้ได้จากการถลุงเหล็ก โดยใช้เตาบลาสเฟอร์เนส (Blast Furnace ) เหล็กที่ได้มาจาก Blast Furnace เป็นเหล็กที่ไม่บริสุทธิ์เรียก Pigiron

18. เหล็กกล้า เป็นเหล็กที่ใช้ประโยชน์มาก เช่น ทำขัน ทำขบวนรถไฟ

19. เหล็กกล้าผสม คุณสมบัติและประโยชน์ที่เหล็กกล้าถูกสารอื่นผสม ดังนี้

– เติมโครเมียม ( Cr ) ทำให้เหล็กเหนียว แข็ง ใช้ทำมีดโกน เกียร์รถยนต์ เหล็กกล้ากันสนิม (Stainless Steel )
– เติมนิเกิล ( Ni ) ทำให้เหล็กเหนี่ยวไม่เปราะ ใช้ทำชิ้นส่วนรถยนต์
– เติมแมงกานีส ( Mn )ทำให้เหล็กแข็งและเหนียวใช้ทำตู้นิรภัยชิ้นส่วนเรือรบ
– เติมทังสเตน ( W ) ทำให้เหล็กเหนียว ใช้ทำชิ้นส่วนรถยนต์

20. ทองแดง ( Cu ) ซึ่งพบมากในธรรมชาติเกิดในรูปของสินแร่ต่างๆ และมีอยู่ในเลือดของสัตว์บางชนิด คือ มีใน Haemocyanin (ฮีมี)ทองแดงมีคุณสมบัติเป็นโลหะ เป็นตัวนำไฟฟ้าที่ดีมากลงมาจากเงิน

21. ทองเหลือง ( Brass ) คือ ทองแดงผสมกับสังกะสี ใช้ทำกุญแจ ปลอกกระสุนปืน กรอบประตู

22. บรอนซ์ ( Bronze ) บางทีเรียกสัมฤทธิ์ ลงหินหรือทองม้าล่อ คือ ทองแดงผสมกับดีบุก ในอัตราส่วนต่างๆ

23. จุนสี เป็นสารประกอบที่สำคัญของทองแดง บางทีเรียก Blue Vitriol มนุษย์ใช้จุนสีฆ่าเห็ดรา (Fungicide ) ฆ่าเชื้อโรคจัดเป็นพวกยาประเภท Germicide

24. เงิน ( Ag ) เป็นสื่อไฟฟ้าและความร้อนที่ดีที่สุด ทนทานต่อการกัดกร่อนของกรดอินทรีย์ และโซดาไฟ

25. ทองคำ ( Au ) เป็นธาตุที่หายากมาก มีในโลกประมาณ 1 เท่าของเงิน ความบริสุทธิ์ของทองคำใช้วัดเป็นกะรัต ทองคำที่บริสุทธิ์จริงคือ ทองคำ 24 กะรัต ทองคำนี้ใช้ทำทองขาวเทียม (White gold ) ซึ่งมีสีคล้ายทองขาว ประกอบด้วยทอง 80 % นิกเกิล 20%

26. โคบอลท์ ( Co ) โลหะนี้ผสมกับเหล็กกล้าเพื่อใช้เป็นเครื่องมือตัดโลหะ ประโยชน์สำคัญมากใช้ทำโคบอลท์ 60 เพื่อการรักษามะเร็ง

27. ทังสเตน ( W ) ปัจจุบันใช้ทำไส้หลอดไฟฟ้า ใช้ผสมกับเหล็กใช้ทำ Tungsten carbide ซึ่งจัดว่าเป็นสารที่แข็งมาก ใช้ประกอบเครื่องมือตัดโลหะด้วยความเร็วสูง

28. เยอรเมเนียม ( Ge ) เป็นธาตุที่หายากมาก ใช้เป็นส่วนประกอบ ของเครื่องทรานซิสเตอร์ และใช้ในเครื่องอิเล็กทรอนิกส์ต่างๆ

ธาตุกัมตรังสีที่เกี่ยวข้องกับชีวิตประจำวัน

Chrysanthemum เชื้อเพลืงธรรมชาติ

ในปี ค.ศ. 1896 อองตวน อองรี เบ็กเคอเรล นักวิทยาศาสตร์ชาวฝรั่งเศส พบว่า  เมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำไว้กับสารประกอบของยูเรเนียม ฟิล์มจะมีลักษณะเหมือนถูกแสง และเมื่อทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่นๆ ก็ได้ผลเช่นเดียวกัน  จึงสรุปได้ว่าน่าจะมีรังสีแผ่ออกมาจากธาตุยูเรเนียม ดังภาพ

ภาพที่ 11 การทดลองสารกัมมันตรังสีของอองตวน อองรี เบ็กเคอเรล

          ต่อมา ปีแอร์ และมารี กูรี ได้ค้นพบว่า ธาตุยูพอโลเนียม เรเดียม และทอเรียม ก็สามารถแผ่รังสีได้เช่นเดียวกัน  เพราะฉะนั้นจึงสรุปได้ว่า
          ธาตุกัมมันตรังสี หมายถึง ธาตุที่แผ่รังสีได้ เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า  82
          กัมมันตภาพรังส หมายถึง ปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว มี 3 ชนิด คือ รังสีแอลฟา รังสีบีตา และรังสีแกมมา
ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่งมีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ เช่น


(ธาตุยูเรเนียม)      (ธาตุทอเลียม) (อนุภาคแอลฟา)

          จะเห็นได้ว่า การแผ่รังสีจะทำให้เกิดธาตุใหม่ได้  หรืออาจเป็นธาตุเดิมแต่จำนวนโปรตอนหรือนิวตรอนอาจไม่เท่ากับธาตุเดิม  และธาตุกัมมันตรังสีแต่ละธาตุ  มีระยะเวลาในการสลายตัวแตกต่างกันและแผ่รังสีได้แตกต่างกัน  เรียกว่า ครึ่งชีวิตของธาตุ
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้

ตารางที่ 7 ชนิดและสมบัติของรังสีบางชนิด

ชนิดของรังสี
สัญลักษณ์
สมบัติ
รังสีแอลฟา
หรืออนุภาคแอลฟา
หรือ
เป็นนิวเคลียสของอะตอมฮีเลียม มีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค มีประจุไฟฟ้า +2 มีเลขมวล 4 มีอำนาจทะลุทะลวงต่ำเพียงแค่กระดาษ อากาศที่หนาประมาณ 2-3 cm น้ำที่หนาขนาดมิลลิเมตร หรือโลหะบางๆ ก็สามารถกั้นอนุภาคแอลฟาได้
รังสีบีตา
หรืออนุภาคบีตา
หรือ
มีสมบัติเหมือนอิเล็กตรอน มีประจุไฟฟ้า -1 มีมวลเท่ากับอิเล็กตรอน (น้อยมาก) มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า สามารถผ่านแผ่นโลหะบางๆ ได้ และมีความเร็วใกล้เคียงกับความเร็วแสง
รังสีแกมมา
เป็นคลื่อนแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก ไม่มีประจุ ไม่มีมวล เป็นรังสีที่มีพลังงานสูง มีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง สามารถผ่านแผ่นตะกั่วหนา 8 mm หรือแผ่นคอนกรีตหนาๆ ได้

ภาพที่ 12 อำนาจทะลุทะลวงของรังสีต่างๆ

การเกิดปฏิกิริยาของธาตุกัมมันตรังสี
การเกิดปฏิกิริยาของธาตุกัมมันตรังสี เรียกว่า ปฏิกิริยานิวเคลียร์ ซึ่งมี 2 ประเภท คือ
          1. ปฏิกิริยาฟิชชัน (Fission reaction) คือ ปฏิกิริยานิวเคลียร์ที่เกิดขึ้น เนื่องจากการยิงอนุภาคนิวตรอนเข้าไปยังนิวเคลียสของธาตุหนัก แล้วทำให้นิวเคลียร์แตกออกเป็นนิวเคลียร์ที่เล็กลงสองส่วนกับให้อนุภาคนิวตรอน 2-3 อนุภาค และคายพลังงานมหาศาลออกมา ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรงที่เรียกว่า ลูกระเบิดปรมาณู (Atomic bomb) เพื่อควบคุมปฏิกิริยาลูกโซ่ไม่ให้เกิดรุนแรงนักวิทยาศาสตร์จึงได้สร้างเตาปฏิกรณ์ปรมาณูเพื่อใช้ในการผลิตกระแสไฟฟ้า

 ภาพที่ 13 การเกิดปฏิกิริยาฟิชชัน

          2. ปฏิกิริยาฟิวชัน (Fusion reaction) คือ ปฏิกิริยานิวเคลียร์ที่นิวเคลียสของธาตุเบาหลอมรวมกันเข้าเป็นนิวเคลียสที่หนักกว่า และมีการคายความร้อนออกมาจำนวนมหาศาลและมากกว่าปฏิกิริยาฟิชชันเสียอีก ปฏิกิริยาฟิวชันที่รู้จักกันดี คือ ปฏิกิริยาระเบิดไฮโดรเจน (Hydrogen bomb) ดังภาพ

ภาพที่ 14 การเกิดปฏิกิริยาฟิวชัน

ประโยชน์จากการใช้ธาตุกัมมันตรังสี
          1. ด้านธรณีวิทยา การใช้คาร์บอน-14  (C-14) คำนวณหาอายุของวัตถุโบราณ
2. ด้านการแพทย์ ใช้ไอโอดีน-131 (I-131) ในการติดตามเพื่อศึกษาความผิดปกติของต่อมไธรอยด์ โคบอลต์-60 (Co-60) และเรเดียม-226 (Ra-226) ใช้รักษาโรคมะเร็ง
3. ด้านเกษตรกรรม ใช้ฟอสฟอรัส 32 (P-32) ศึกษาความต้องการปุ๋ยของพืช ปรับปรุงเมล็ดพันธุ์ที่ต้องการ  และใช้โพแทสเซียม-32 (K–32) ในการหาอัตราการดูดซึมของต้นไม้
          4. ด้านอุตสาหกรรม ใช้ธาตุกัมมันตรังสีตรวจหารอยตำหนิ เช่น รอยร้าวของโลหะหรือท่อขนส่งของเหลว ใช้ธาตุกัมมันตรังสีในการ ตรวจสอบและควบคุมความหนาของวัตถุ ใช้รังสีฉายบนอัญมณีเพื่อให้มีสีสันสวยงาม
          5. ด้านการถนอมอาหาร ใช้รังสีแกมมาของธาตุโคบอลต์-60 (Co–60) ปริมาณที่พอเหมาะใช้ทำลายแบคทีเรียในอาหาร  จึงช่วยให้เก็บรักษาอาหารไว้ได้นานขึ้น
          6. ด้านพลังงาน มีการใช้พลังงานความร้อนที่ได้จากปฏิกิริยานิวเคลียร์ในเตาปฏิกรณ์ปรมาณูของยูเรีเนียม-238 (U-238) ต้มน้ำให้กลายเป็นไอ แล้วผ่านไอน้ำไปหมุนกังหัน เพื่อผลิตกระแสไฟฟ้า

เอ็กซ์-เรย์
อาบรังสีเพื่อถนอมอาหาร
โรงงานไฟฟ้านิวเคลียร์

ภาพที่ 15 ตัวอย่างประโยชน์จากธาตุกัมมันตรังสี

ตารางที่ 8 แสดงธาตุและไอโซโทป

ธาตุ/ไอโซโทป

ครึ่งชีวิต

แบบการสลายตัว

ประโยชน์

Tc -99

6 ชั่วโมง

 

C-14

5,760 ปี

บีตา

หาอายุวัตถุโบราณ

Co-60

5.26 ปี

แกมมา

รักษามะเร็ง

Au-198

2.7 วัน

บีตา แกมมา

วินิจฉัยตับ

I-125

60 วัน

แกมมา

หาปริมาณเลือด

I-131

8.07 วัน

บีตา แกมมา

วินิจฉัยอวัยวะ

P-32

14.3 วัน

บีตา

รักษามะเร็ง

Pu-239

24,000 ปี

แอลฟา  แกมมา

พลังงาน

K-40

1×109 ปี

บีตา

หาอายุหิน

U-238

4.5×109 ปี

แอลฟา  แกมมา

วัตถุเริมต้นให้ Pu-239

U-235

7.1×109 ปี

แอลฟา  แกมมา

รักษามะเร็ง

Cl-36

4×105 ปี

Po-216

0.16 วินาที

Ra-226

1,600 ปี

แอลฟา  แกมมา

รักษามะเร็ง

โทษของธาตุกัมมันตรังสี
          1. ถ้าร่างกายได้รับจะทำให้โมเลกุลภายในเซลล์เกิดการเปลี่ยนแปลงไม่สามารถทำงานตามปกติได้ ถ้าเป็นเซลล์ที่เกี่ยวข้องกับการถ่ายทอดลักษณะพันธุกรรมก็จะเกิดการผ่าเหล่า โดยเฉพาะเซลล์สืบพันธุ์เมื่อเข้าไปในร่างกายจะไปสะสมในกระดูก
          2. ส่วนผลที่ทำให้เกิดความป่วยไข้จากรังสี เมื่ออวัยวะส่วนใดส่วนหนึ่งของร่างกายได้รับรังสี โมเลกุลของธาตุต่างๆ ที่ประกอบเป็นเซลล์จะแตกตัว ทำให้เกิดอาการป่วยไข้และเกิดมะเร็งได้

การเเยกสารผสม

aaa
การแยกสารเนื้อผสม
สารเนื้อผสม หมายถึง สารที่มีลักษณะเนื้อสารไม่ผสมกลมกลืนกันเป็นเนื้อเดียวกันเกิดจาก
สารอย่างน้อย 2 ชนิดขึ้นไปมาผสมกันโดยเนื้อสารจะแยกกันเป็นส่วน ๆ
การแยกสารเนื้อผสมอาจใช้วิธีการต่าง ๆ เช่น การกรอง การใช้กรวยแยก การใช้อำนาจแม่เหล็ก การระเหิด การระเหยจนแห้ง ซึ่งเป็นการแยกสารโดยวิธีทางกายภาพทั้งสิ้น สารที่แยกได้จะมีสมบัติเหมือนเดิม
1. การกรอง เป็นวิธีการแยกสารออกจากกันระหว่างของแข็งกับของเหลว หรือใช้แยกสารแขวนลอยออกจากน้ำ ซึ่งใช้กันมากในทางเคมี โดยเฉพาะในห้องปฏิบัติการที่กรองสารในปริมาณน้อย ๆ การกรองนั้นจะต้องเทสารผ่านกระดาษกรอง อนุภาคของแข็งที่ลอดผ่านรูกระดาษกรองไม่ได้จะอยู่บนกระดาษกรอง ส่วนน้ำและสารที่ละลายน้ำได้จะผ่านกระดาษกรองลงสู่ภาชนะ
2. การใช้กรวยแยก เป็นวิธีที่ใช้แยกสารเนื้อผสมที่เป็นของเหลว 2 ชนิดที่ไม่ละลายออกจากกัน โดยของเหลวทั้งสองนั้นแยกเป็นชั้นเห็นได้ชัดเจน เช่น น้ำกับน้ำมัน เป็นต้น การแยกโดยวิธีนี้จะนำของเหลวใส่ในกรวยแยก แล้วไขของเหลวที่อยู่ในชั้นล่างซึ่งมีความหนาแน่นมากกว่าชั้น
บนออกสู่ภาชนะจนหมด แล้วจึงค่อย ๆ ไขของเหลวที่ที่เหลือใส่ภาชนะใหม่
3. การใช้อำนาจแม่เหล็ก เป็นวิธีที่ใช้แยกองค์ประกอบของสารเนื้อผสมซึ่งองค์ประกอบหนึ่งมีสมบัติในการถูกแม่เหล็กดูดได้ เช่น ของผสมระหว่างผงเหล็กกับผงกำมะถัน โดยใช้แม่เหล็กถูไปมาบนแผ่นกระดาษที่วางทับของผสมทั้งสอง แม่เหล็กจะดูดผงเหล็กแยกออกมา
4. การระเหิด คือ ปรากฏการณ์ที่สารเปลี่ยนสถานะจากของแข็งกลายเป็นก๊าซหรือไอโดยไม่เปลี่ยนสถานะเป็นของเหลวก่อน ใช้แยกสารเนื้อผสมที่เป็นของแข็งออกจากกัน โดยของแข็งชนิดหนึ่งมีสมบัติระเหิดได้ เช่น ลูกเหม็น พิมเสน น้ำแข็งแห้ง การบูรกับเกลือแกง เมื่อให้ความร้อนการบูรจะกลายเป็นไอแยกออกจากเกลือแกง ดักไอของการบูรด้วยภาชนะที่เย็นจะได้การบูรเป็นของแข็งแยกออกมา
5. การใช้มือหยิบออกหรือเขี่ยออก ใช้แยกของผสมเนื้อผสม ที่ของผสมมีขนาดโตพอที่
จะหยิบออกหรือเขี่ยออกได้ เช่น ข้าวสารที่มีเมล็ดข้าวเปลือกปนอยู่
6. การตกตะกอน ใช้แยกของผสมเนืท้อผสมที่เป็นของแข็งแขวนลอยอยู่ในของเหลว ทำได้โดยนำของผสมนั้นวางทิ้งไว้ให้สารแขวนลอยค่อย ๆ ตกตะกอนนอนก้น ในกรณีที่ตะกอนเบามากถ้าต้องการให้ตกตะกอนเร็วขึ้นอาจทำได้โดย ใช้สารตัวกลางให้อนุภาคของตะกอนมาเกาะ เมื่อมีมวลมากขึ้น น้ำหนักจะมากขึ้นจะตกตะกอนได้เร็วขึ้น เช่น ใช้สารส้มแกว่ง อนุภาคของสารส้มจะทำหน้าที่เป็นตัวกลางให้โมเลกุลของสารที่ต้องการตกตะกอนมาเกาะ ตะกอนจะตกเร็วขึ้น

สารในชีวิตประจำวัน/การแยกสารเนื้อผสม และเนื้อเดียว

การแยกสาร หมายถึงการที่แยกสารที่ผสมกันตั้งแต่ ๒ ชนิดขึ้นไปออกจากกัน เพื่อนำสารที่ได้นั้นไปใช้ประโยชน์ตามต้องการ ซึ่งสามารถจำแนกได้คือ การแยกสารเนื้อผสม และการแยกสารเนื้อเดียว

สารเนื้อผสม หมายถึง สารที่มีลักษณะเนื้อสารไม่ผสมกลมกลืนกันเป็นเนื้อเดียวกันเกิดจาก สารอย่างน้อย 2 ชนิดขึ้นไปมาผสมกันโดยเนื้อสารจะแยกกันเป็นส่วน ๆ การแยกสารเนื้อผสมอาจใช้วิธีการต่าง ๆ เช่น การกรอง การใช้กรวยแยก การใช้อำนาจแม่เหล็ก การระเหิด การระเหยจนแห้ง ซึ่งเป็นการแยกสารโดยวิธีทางกายภาพทั้งสิ้น สารที่แยกได้จะมีสมบัติเหมือนเดิม

1. การกรอง เป็นวิธีการแยกสารออกจากกันระหว่างของแข็งกับของเหลว หรือใช้แยกสารแขวนลอยออกจากน้ำ ซึ่งใช้กันมากในทางเคมี โดยเฉพาะในห้องปฏิบัติการที่กรองสารในปริมาณน้อย ๆ การกรองนั้นจะต้องเทสารผ่านกระดาษกรอง อนุภาคของแข็งที่ลอดผ่านรูกระดาษกรองไม่ได้จะอยู่บนกระดาษกรอง ส่วนน้ำและสารที่ละลายน้ำได้จะผ่านกระดาษกรองลงสู่ภาชนะ

2. การใช้กรวยแยก เป็นวิธีที่ใช้แยกสารเนื้อผสมที่เป็นของเหลว 2 ชนิดที่ไม่ละลายออกจากกัน โดยของเหลวทั้งสองนั้นแยกเป็นชั้นเห็นได้ชัดเจน เช่น น้ำกับน้ำมัน เป็นต้น การแยกโดยวิธีนี้จะนำของเหลวใส่ในกรวยแยก แล้วไขของเหลวที่อยู่ในชั้นล่างซึ่งมีความหนาแน่นมากกว่าชั้นบนออกสู่ภาชนะจนหมด แล้วจึงค่อย ๆ ไขของเหลวที่ที่เหลือใส่ภาชนะใหม่

3. การใช้อำนาจแม่เหล็ก เป็นวิธีที่ใช้แยกองค์ประกอบของสารเนื้อผสมซึ่งองค์ประกอบหนึ่งมีสมบัติในการถูกแม่เหล็กดูดได้ เช่น ของผสมระหว่างผงเหล็กกับผงกำมะถัน โดยใช้แม่เหล็กถูไปมาบนแผ่นกระดาษที่วางทับของผสมทั้งสอง แม่เหล็กจะดูดผงเหล็กแยกออกมา

4. การระเหิด คือ ปรากฏการณ์ที่สารเปลี่ยนสถานะจากของแข็งกลายเป็นก๊าซหรือไอโดยไม่เปลี่ยนสถานะเป็นของเหลวก่อน ใช้แยกสารเนื้อผสมที่เป็นของแข็งออกจากกัน โดยของแข็งชนิดหนึ่งมีสมบัติระเหิดได้ เช่น ลูกเหม็น พิมเสน น้ำแข็งแห้ง การบูรกับเกลือแกง เมื่อให้ความร้อนการบูรจะกลายเป็นไอแยกออกจากเกลือแกง ดักไอของการบูรด้วยภาชนะที่เย็นจะได้การบูรเป็นของแข็งแยกออกมา

5. การใช้มือหยิบออกหรือเขี่ยออก ใช้แยกของผสมเนื้อผสม ที่ของผสมมีขนาดโตพอที่จะหยิบออกหรือเขี่ยออกได้ เช่น ข้าวสารที่มีเมล็ดข้าวเปลือกปนอยู่

6. การตกตะกอน ใช้แยกของผสมเนื้อผสมที่เป็นของแข็งแขวนลอยอยู่ในของเหลว ทำได้โดยนำของผสมนั้นวางทิ้งไว้ให้สารแขวนลอยค่อย ๆ ตกตะกอนนอนก้น ในกรณีที่ตะกอนเบามากถ้าต้องการให้ตกตะกอนเร็วขึ้นอาจทำได้โดย ใช้สารตัวกลางให้อนุภาคของตะกอนมาเกาะ เมื่อมีมวลมากขึ้น น้ำหนักจะมากขึ้นจะตกตะกอนได้เร็วขึ้น เช่น ใช้สารส้มแกว่ง อนุภาคของสารส้มจะทำหน้าที่เป็นตัวกลางให้โมเลกุลของสารที่ต้องการตกตะกอนมาเกาะ ตะกอนจะตกเร็วขึ้น

การแยกสารเนื้อเดียว

สารเนื้อเดียว เป็นสารทีเกิดขึ้นโดยทั่วไป มองเห็นเป็นเนื้อเดียวกันโดยตลอด แบ่งเป็นพวก ได้แก่ ธาตุ สารละลาย และสารประกอบ ในการแยกสารเนื้อเดียวที่อยู่ในรูปของสารละลายนั้น สามารถทำได้โดยวิธีการดังต่อไปนี้

1. การระเหยจนแห้ง ใช้ในกรณีที่ตัวถูกละลายเป็นของแข็งและตัวทำละลายเป็นของเหลว หรือของแข็งละลายในของเหลว เช่น เมื่อนำเกลือแกงซึ่งเป็นของแข็งมาละลายในน้ำจะได้ของผสมเนื้อเดียวกัน เรียกว่า สารละลายเกลือแกง ในกรณีที่เราต้องการแยกเกลือแกงและน้ำออกจากสาระลายเกลือแกงทำได้โดยการนำสารดังกล่าวมาให้ความร้อน เพื่อระเหยตัวละลาย ในที่นี้คือน้ำออกไป สิ่งที่เหลืออยู่ในภาชนะคือตัวถูกละลาย ที่เป็นของแข็งในที่นี้คือ เกลือแกง

2. โครมาโตกราฟี (Chromatography) เป็นเทคนิคการแยกสารเนื้อเดียวออกจากกันให้เป็นสารบริสุทธิ์ โดยอาศัยหลักการที่ว่า “สารแต่ละชนิดมีความสามารถในการละลายต่างกัน และถูกดูดซับต่างกัน จึงทำให้สารแต่ละชนิดแยกออกจากกันได้” ดังนั้นการแยกสารด้วยเทคนิคโครมาโตกราฟี จึงต้องอาศัยสมบัติของสารดังนี้

2.1 สารต่างชนิดกันมีความสามารถในการละลายในตัวทำละลายชนิดเดียวกันได้ดี ไม่เท่ากัน สารที่ละลายได้ดีจะเคลื่อนที่ไปได้เร็ว

2.2 สารต่างชนิดกันถูกดูดซับโดยตัวดูดซับได้ดีไม่เท่ากันสารที่ถูกดูดซับได้ดีจะเคลื่อนที่ได้ช้า

2.3 สารที่ละลายในตัวทำละลายได้ดี และถูกดูดซับน้อยจะเคลื่อนที่ได้เร็วไปได้ไกล

2.4 สารที่ละลายในตัวทำละลายได้น้อยและถูกดูดซับมากจะเคลื่อนที่ช้าไปได้ไม่ไกล

ประโยชน์ของโครมาโตกราฟี

1. ใช้ในการแยกสารเนื้อเดียวที่มีส่วนผสมหลาย ๆ ชนิด ให้ได้เป็นสารบริสุทธิ์

2. ใช้ในการวิเคราะห์หาปริมาณและชนิดของสาร

3. ใช้ทดสอบหรือแยกสารตัวอย่างที่มีปริมาณน้อย ๆ ได้

4. ใช้แยกสารได้ทั้งสารที่มีสีและไม่มีสี

3. การกลั่น เป็นกระบวนการที่ทำให้ของเหลวได้รับความร้อนจนกลายเป็นไอ ทำให้แยกตัวทำละลายและตัวถูกละลายที่ต่างก็เป็นของเหลวออกจากกันได้โโยอาศัยความแตกต่างกันของจุดเดือด การกลั่นจะใช้ได้ผลต่อเมื่อตัวทำละลายและตัวถูกละลายเดือดที่อุณหภูมิต่างกันค่อนข้างมาก(ต่างกันอย่างน้อย 20 ๐C) เช่น การแยกน้ำจากน้ำทะเล การแยกน้ำจากน้ำคลอง การแยกน้ำจากน้ำเกลือ หรือน้ำเชื่อม เป็นต้น

4. การตกผลึก เป็นกระบวนการแยกของแข็งที่ละลายในตัวทำละลายที่เป็นของเหลว โดยทำให้สารละลายอิ่มตัวที่อุณหภูมิสูง แล้วปล่อยให้สารละลายเย็นลง ของแข็งจะตกผลึกออกมา

ผลที่เกิดขึ้นกับวัตถุเมื่อเเรงลัพธ์ที่กระทำต่อวัตถุเท่ากับศูนย์

แรง

เมื่อวัตถุถูกแรงกระทำพร้อม ๆ กันมากกว่าหนึ่งแรงขึ้นไป ผลของแรงกระทำทั้งหมดจะส่งผลเสมือนเกิดจากแรง ๆ เดียว

ซึ่งเป็นผลจากการรวมกันของแรงทุกแรง เราเรียกแรงที่เกิดจากการรวมแรงหลาย ๆ แรงนี้ว่า แรงลัพธ์

 

1.  หากมี 2 แรงผลักวัตถุไปตามพื้นราบในทิศทางเดียวกัน แรงทั้งสองแรงจะรวมเข้าด้วยกันเป็นแรงลัพธ์ที่ทำให้วัตถุเคลื่อนที่

ดังรูป

 

 

2.  หากแรง 2 แรง ผลักวัตถุไปตามพื้นราบในทิศทางตรงข้ามกัน หากแรงด้านใดมีมากกว่า วัตถุจะเคลื่อนที่ไปตามทิศทาง

ของแรงนั้น ดังรูป

 

                                          

 

3.  หากมีแรง 2 แรงผลักวัตถุไปตามพื้นราบในทิศทางตรงกันข้าม และแรงทั้งสองแรงมีขนาดเท่ากันวัตถุจะไม่เคลื่อนที่ ดังรูป

 

 

 

ถ้าแรงลัพธ์ที่กระทำต่อวัตถุ ทำให้วัตถุเปลี่ยนแปลงสภาพการเคลื่อนที่ แรงลัพธ์ที่เกิดขึ้นนั้นไม่เป็นศูนย์ แต่ถ้าแรงที่กระทำต่อวัตถุนั้นไม่

ทำให้วัตถุเปลี่ยนแปลงสภาพการเคลื่อนที่ แรงลัพธ์ที่เกิดขึ้นจะมีค่าเป็นศูนย์

วิธีการหาแรงลัพธ์ มี 2 วิธี
1. การเขียนรูป (โดยแทนแรงด้วยลูกศร )
ใช้หางต่อหัว คือเอาหางของลูกศรที่แทนแรงที่ 2 มาต่อหัวลูกศรที่แทนแรงที่ 1
แล้วเอาหางลูกศรที่แทนแรงที่ 3 มาต่อหัวลูกศรที่แทนแรงที่ 2 …..ต่อกันไปจนหมด
โดยทิศของลูกศรที่แทนแรงเดิมไม่เปลี่ยนแปลง
ขนาดของแรงลัพธ์คือ ความยาวลูกศรที่ลากจากจุดเริ่มต้น ไปยังจุดสุดท้าย
มีทิศจากจุดเริ่มต้นไปจุดสุดท้าย
   
  ตัวอย่าง เมื่อมีแรง A B และ C มากระทำต่อวัตถุ ดังรูป

 

  หาแรงลัพธ์โดยการเขียนรูปได้ดังนี้
 
 
ขนาดของแรงลัพธ์ = D
  2. โดยการคำนวณ
                     2.1. เมื่อแรงทำมุม 0 องศา (แรงไปทางเดียวกัน)
แรงลัพธ์ = ขนาดแรง ทั้งสองบวกกัน และทิศของแรงลัพธ์ มีทิศเดิม
 
 
                  2.2. เมื่อแรงทำมุมกัน 180 องศา (ทิศทางตรงข้าม)
                                   แรงลัพธ์ = แรงมากลบด้วยแรงน้อย ทิศของแรงลัพธ์มีทิศเดียวกับแรงมาก
 
   
                   2.3. เมื่อแรงทำมุมกัน 90 องศา หาแรงลัพธ์โดยใช้ทฤษฎีบทของพีธากอรัส
 
                                      
                                         หาขนาดของแรงลัพธ์โดยใช้สี่เหลี่ยมด้านขนานให้แรงทั้งสองเป็นด้านประกอบ
ของสี่เหลี่ยมด้านขนาน เส้นทะแยงมุมคือแรงลัพธ์
    
 
หาทิศแรงลัพธ์ ( มุมที่แรงลัพธ์ทำกับสิ่งอ้างอิง )
 
 
แต่ถ้าแรง P และ Q ทำมุมดังรูป ( P และ Q สลับกับรูปเดิม)
 
                       2.5 ถ้ามีแรงหลาย ๆแรงมากระทำกับวัตถุ การหาแรงลัพธ์ หาได้โดยวิธีการแตก
แรงเข้าสู่แกนตั้งฉาก

ขั้นตอนการหาแรงลัพธมี์ดังนี้

1.เขียนแกนตั้งฉากอ้างอิง
2.แตกแรงเข้าสู่แกนตั้งฉาก ( 1 แรงต้องแตกเข้าแกนตั้งฉากทั้งสองแกนเสมอ )

 
 
5. หาขนาดของแรงลัพธ์โดยใช้พีธากอรัส
 
 

ตัวอย่างการคำนวณ

1.ชายคนหนึ่งออกแรงลากลังไม้ดังรูปด้วยแรง 100 นิวตัน จงหา
1. แรงดึงในแนวดิ่ง

                                           2.แรงดึงในแนวระดับ

                                  

  2. จงหาแรงย่อยในแกนตั้งฉาก

  3. จงหาแรงย่อยในแกนตั้งฉาก

ข้อสังเกต จากข้อ 2 และ 3 แรงประกอบย่อยถ้าอยู่ชิดมุม จะเท่ากับ แรง คูณด้วยค่า cos ของมุมนั้น
ถ้าไม่ชิดมุม แรงประกอบย่อยจะเท่ากับ แรงคูนด้วยค่า sin ของมุมนั้น

  4. เมื่อออกแรง 3 และ 4 นิวตันกระทำต่อวัตถุ ดังรูป จงหา ขนาดของแรงลัพธ์โดยการเขียนรูป

เขียนรูป ใช้หางต่อหัววัดขนาดแรงลัพธ์ได้ 5 N

เขียนรูป ใช้หางต่อหัว วัดขนาดแรงลัพธ์ได้ 6.01 N

ในชีวิตประจำวันของเรามีการนำแรงลัพธ์มาใช้ประโยชน์มากมาย ตัวอย่างเช่น การสร้างสะพานแขวน

การปั่นจักรยานพ่วง การใช้สุนัขหลาย ๆ ตัวหลากเลื่อน

สะพานแขวน

 

การปั่นจักรยานพ่วง

สุนัขลากเลื่อน

ขนาดเเละทิศทางของเเรง

images

ความหมายของแรง

แรง หมายถึง อำนาจภายนอกที่สามารถทำให้วัตถุเปลี่ยนสถานะได้ เช่นทำให้วัตถุที่อยู่นิ่งเคลื่อนที่ไป ทำให้วัตถุที่เคลื่อนที่อยู่แล้วเคลื่อนที่เร็วหรือช้าลง ทำให้วัตถุมีการเปลี่ยนทิศตลอดจนทำให้วัตถุมีการเปลี่ยนขนาดหรือรูปทรงไปจากเดิมได้แรงเป็นปริมาณเวกเตอร์ ที่มีทั้งขนาดและทิศทางการรวมหรือหักล้างกันของแรงจึงต้องเป็นไปตามแบบเวกเตอร์

เวกเตอร์ของแรง

ปริมาณบางปริมาณที่ใช้กันอยู่ในชีวิตประจำวันบอกเฉพาะขนาดเพียงอย่างเดียวก็ได้ความหมายสมบูรณ์แล้ว แต่บางปริมาณจะต้องบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ ปริมาณในทางฟิสิกส์แบ่งออกเป็น 2 ประเภท คือ

1. ปริมาณสเกลาร์ (scalar quantity) คือ ปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายที่สมบูรณ์ โดยไม่ต้องบอกทิศทาง เช่น เวลา ระยะทาง มวล พลังงาน งาน ปริมาตร ฯลฯ ในการหาผลลัพธ์ของปริมาณสเกลาร์ทำได้โดยอาศัยหลักทางพีชคณิต คือ ใช้วิธีการบวก ลบ คูณ หาร

2. ปริมาณเวกเตอร์ (vector quantity) คือ ปริมาณที่ต้องการบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ เช่น ความเร็ว ความเร่ง การกระจัด โมเมนตัม แรง ฯลฯ

ลักษณะที่สำคัญของปริมาณเวกเตอร์

1. สัญลักษณ์ของปริมาณเวกเตอร์ การแสดงขนาดและทิศทางของปริมาณเวกเตอร์จะใช้ลูกศรแทน โดยขนาดของปริมาณเวกเตอร์แทนด้วยความยาวของลูกศรและทิศทางของปริมาณเวกเตอร์แทนด้วยทิศทางของหัวลูกศร สัญลักษณ์ของปริมาณเวกเตอร์ ใช้ตัวอักษรมีลูกศรครึ่งบนชี้จากซ้ายไปขวาแสดงปริมาณเวกเตอร์ ดังรูป

จากรูป เวกเตอร์ A มีขนาด 4 หน่วย ไปทางทิศตะวันออก

เวกเตอร์ B มีขนาด 3 หน่วย ไปทางทิศใต้

2. เวกเตอร์ที่เท่ากัน เวกเตอร์ 2 เวกเตอร์จะเท่ากันก็ต่อเมื่อมีขนาดเท่ากันและทิศทางไปทางเดียวกัน ดังรูป

จากรูป เวกเตอร์ A เท่ากับ เวกเตอร์ B เขียนเป็นสัญลักษณ์

เวกเตอร์ C เท่ากับ เวกเตอร์ D เขียนเป็นสัญลักษณ์

3. เวกเตอร์ตรงข้ามกัน เวกเตอร์ 2 เวกเตอร์จะตรงข้ามกันก็ต่อเมื่อ เวกเตอร์ทั้งสองมีขนาดเท่ากัน แต่มีทิศทางตรงข้ามกัน ดังรูป

จากรูป เวกเตอร์ A ตรงข้ามกับเวกเตอร์ B เขียนเป็นสัญลักษณ์ ได้ว่า

เวกเตอร์ C ตรงข้ามกับเวกเตอร์ D เขียนเป็นสัญลักษณ์ ได้ว่า

ข้อควรทราบ ในการหาผลลัพธ์ของปริมาณเวกเตอร์ ทำได้โดยอาศัยวิธีการทางเวกเตอร์ ซึ่งต้องหาผลลัพธ์ทั้งขนาดและทิศทาง การหาผลลัพธ์ของแรงหลายแรง การรวมแรงซึ่งมีหลายแรงเพื่อจะหาแรงลัพธ์เพียงแรงเดียว นิยมใช้สัญลักษณ์ เรียกว่า

แทน เพื่อรวมผลบวกที่มีแรงหลายๆ ค่า เช่น

กระทำพร้อม ๆ กันที่จุดเดียว ดังนี้

การรวมแรง คือ การหาค่าแรงลัพธ์ () ของแรงย่อยทั้งหมด มีวิธีการหาเหมือนกันกับเวกเตอร์ลัพธ์ เพราะแรงเป็นปริมาณเวกเตอร์ ซึ่งอาจสรุปวิธีการหาแรงลัพธ์ได้ดังนี้

1. โดยวิธีการวาดรูปแบบหางต่อหัว การหาแรงลัพธ์ด้วยวิธีการนี้ทำได้โดยนำหางของแรงที่สองไปต่อกับหัวลูกศรของแรงแรกและนำหางของแรงที่สามไปต่อกับหัวของแรงที่สอง ทำเช่นนี้ไปเรื่อยๆ จนครบทุกแรง แรงลัพธ์ที่ได้ คือ แรงที่ลากจากหางของแรงแรกไปยังหัวของแรงสุดท้าย ดังรูป

2. โดยวิธีการคำนวณ ใช้หาแรงลัพธ์ของแรงย่อยที่มี 2 แรง

1) แรงสองแรงไปในทางเดียวกัน แรงลัพธ์มีขนาดเท่ากับผลบวกของแรงทั้งสอง ส่วนทิศทางของแรงลัพธ์ไปทิศทางเดียวกับแรงทั้งสอง ดังรูป

ผลของแรงลัพธ์ต่อการเคลื่อนที่ของวัตถุ

วัตถุต่างๆ เมื่อมีแรงมากระทำ วัตถุจะมีการเปลี่ยนแปลงสภาพเดิมใน 3 ลักษณะ คือ

1. มีการเปลี่ยนแปลงตำแหน่ง

2. มีการเปลี่ยนแปลงความเร็ว

3. มีการเปลี่ยนแปลงรูปร่างและขนาด

เมื่อแรงที่กระทบต่อวัตถุแตกต่างกัน ย่อมทำให้ผลของการเปลี่ยนแปลงแตกต่างกันไปด้วย ถ้าแรงที่กระทำมีค่ามาก การเปลี่ยนแปลงซึ่งเป็นผลของแรงนั้นย่อมมีการเปลี่ยนแปลงมากด้วย

ในชีวิตประจำวัน การที่วัตถุมีการเปลี่ยนแปลงต่างๆ จะเกิดจากอิทธิพลของแรง แรงที่พบตามธรรมชาติมีอยู่มากมายหลายชนิด ซึ่งก็มีผลต่อการเปลี่ยนแปลงของวัตถุได้แตกต่างกัน

ข้อควรทราบ

– แรงที่กระทำไปในทิศทางเดียวกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วเพิ่มขึ้น

– แรงที่กระทำไปในทิศทางตรงข้ามกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วลดลง

การเคลื่อนที่

กฎการเคลื่อนที่ของนิวตัน

เซอร์ไอแซก นิวตัน (Sir Issac Newton) นักฟิสิกส์ ชาวอังกฤษ ได้สรุปเกี่ยวกับการเคลื่อนที่ของวัตถุทั้งที่อยู่ในสภาพอยู่นิ่งและในสภาพเคลื่อนที่เป็นกฎการเคลื่อนที่ของนิวตัน ซึ่งสามารถทำให้เราเข้าใจการเคลื่อนที่ต่างๆ ได้ทั้งหมด กฎของนิวตันมี 3 ข้อ ได้แก่

1. กฎการเคลื่อนที่ข้อที่หนึ่งของนิวตัน หรืออาจเรียกว่า กฎแห่งความเฉื่อย (inertia law) กล่าวว่า “วัตถุจะคงสภาพอยู่นิ่ง หรือสภาพเคลื่อนที่ด้วยความเร็วคงตัวในแนวตรง นอกจากจะมีแรงลัพธ์ซึ่งมีค่าไม่เป็นศูนย์มากระทำ” หรือสรุปเป็นสมการ ดังนี้

จากกฎการเคลื่อนที่ข้อที่ 1 ของนิวตันอธิบายได้ว่า ถ้ามีวัตถุวางนิ่งอยู่บนพื้นราบแล้วไม่มีแรงใดมากระทำต่อวัตถุ วัตถุก็ยังคงอยู่นิ่งเช่นเดิมต่อไป หรือถ้ามีแรงสองแรงมากระทำต่อวัตถุโดยแรงทั้งสองมีขนาดเท่ากันแต่ทิศทางตรงข้ามกันจะพบว่า วัตถุยังคงหยุดนิ่งเช่นเดิม จึงสรุปได้ว่า “วัตถุที่อยู่นิ่งถ้าไม่มีแรงภายนอก อื่นใดมากระทำต่อวัตถุหรือมีแรงภายนอกหลายแรงมากระทำต่อวัตถุ แต่แรงลัพธ์เหล่านั้นเป็นศูนย์แล้ววัตถุนั้นยังคงรักษาสภาพนิ่งไว้อย่างเดิม” ดังรูป

หรือถ้าพิจารณาวัตถุที่กำลังเคลื่อนที่บนพื้นระดับราบลื่นซึ่งไม่มีแรงภายนอกใดมากระทำต่อวัตถุ วัตถุก็จะรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวค่าหนึ่ง หรือถ้าให้แรงสองแรงมากระทำต่อวัตถุขณะวัตถุกำลังเคลื่อนที่ โดยแรงทั้งสองมีขนาดเท่ากันแต่มีทิศทางตรงข้ามกัน จะพบว่า วัตถุยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นต่อไป จึงสรุปได้ว่า ” วัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่งถ้าไม่มีแรงภายนอกมากระทำต่อวัตถุ หรือถ้ามีแรงภายนอกหลายแรงมากระทำต่อวัตถุแต่แรงลัพธ์ของแรงเหล่านั้นเป็นศูนย์แล้ว วัตถุนั้นยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นตลอดไป” ดังรูป

จากที่กล่าวมาแล้วข้างต้นสามารถสรุปได้ว่า “ถ้าแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์วัตถุจะไม่เปลี่ยนสภาพการเคลื่อนที่กล่าวคือ ถ้าเดิมวัตถุอยู่นิ่งก็จะอยู่นิ่งตลอดไปแต่ถ้าเดิมวัตถุกำลังเคลื่อนที่อยู่ด้วยความเร็วค่าหนึ่งวัตถุนั้นก็จะยังคงเคลื่อนที่ต่อไปในแนวตรงตามทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป”

2. กฎการเคลื่อนที่ข้อที่สองของนิวตัน หรืออาจเรียกว่า กฎแห่งความเร่ง ถ้ามวลของวัตถุคงตัวแต่เปลี่ยนขนาดของแรง (F) ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะมากขึ้นด้วยจึงสรุปได้ว่า ขนาดของความเร่งแปรผันตรงกับขนาดของแรงลัพธ์ที่กระทำต่อวัตถุ เมื่อมวลคงตัวเขียนเป็นสัญลักษณ์ได้ว่า

และถ้าแรงลัพธ์ (F) ที่กระทำต่อวัตถุคงตัว แต่ถ้าเปลี่ยนมวล (m)ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะลดลง จึงสรุปได้ว่า ขนาดของความเร่งแปรผกผันกับมวลของวัตถุ เขียนเป็นสัญลักษณ์ได้ว่า

จากข้างต้นสรุปได้ว่า ความเร่ง (a) เป็นสัดส่วนโดยตรงกับแรง (F) ดังนั้นอัตราส่วนของแรงกับความเร่งจะเป็นค่าคงที่ซึ่งตรงกับมวล (m) ของวัตถุ เขียนเป็นความสัมพันธ์จะได้

ดังนั้น จึงสรุปเป็นกฎข้อที่สองของนิวตัน ได้ว่า “เมื่อมีแรงลัพธ์ซึ่งมีขนาดไม่เป็นศูนย์มากระทำต่อวัตถุ จะทำให้วัตถุเกิดความเร่งในทิศเดียวกับแรงลัพธ์ที่มากระทำ และขนาดของความเร่งจะแปรผันตรงกับขนาดของแรงลัพธ์และจะแปรผกผันกับมวลของวัตถุ”

ตัวอย่างที่ 1 ถ้าออกแรง 8 นิวตัน กระทำกับวัตถุมวล 32 กิโลกรัม วัตถุจะมีความเร่งเท่าใด

 

ตัวอย่างที่ 2 มวล 10 กิโลกรัม ต้องการให้เคลื่อนที่ด้วยความเร่ง 6 เมตรต่อวินาทีกำลังสอง จะต้องออกแรงกระทำเท่าใด

3. กฎการเคลื่อนที่ข้อที่สามของนิวตัน จากกฎการเคลื่อนที่ข้อที่หนึ่งและสองของนิวตันจะอธิบายสภาพการเคลื่อนที่ของวัตถุเมื่อมีแรงภายนอกมากระทำต่อวัตถุ ซึ่งจากการศึกษาในขณะที่มีแรงมากระทำต่อวัตถุ วัตถุจะออกแรงโต้ตอบต่อแรงที่มากระทำนั้นด้วย เช่น เมื่อเราออกแรงดึงเครื่องชั่งสปริง เราจะรู้สึกว่าเครื่องชั่งสปริงก็ดึงมือเราด้วยและยิ่งเราออกแรงดึงเครื่องชั่งสปริงด้วยแรงมากขึ้นเท่าใดเราก็จะรู้สึกว่าเครื่องชั่งสปริงยิ่งดึงมือเราไปมากขึ้นเท่านั้น ดังรูป

จากตัวอย่างจะพบว่า เมื่อมีแรงกระทำต่อวัตถุหนึ่ง วัตถุนั้นก็จะออกแรงโต้ตอบในทิศทางตรงข้ามกับแรงที่มากระทำ ซึ่งแรงทั้งสองแรงนี้จะเกิดขึ้นพร้อมกันเสมอ เราเรียกแรงที่มากระทำต่อวัตถุว่า “แรงกิริยา” (action force) และเรียกแรงที่วัตถุโต้ตอบต่อแรงที่มากระทำว่า “แรงปฏิกิริยา” (reaction force) แรงทั้งสองนี้จึงเรียกรวมกันว่า “แรงกิริยา-แรงปฏิกิริยา” (action-reaction) จึงสรุปความสัมพันธ์ระหว่างแรงกิริยากับแรงปฏิกิริยาได้เป็นกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน ได้ว่า “แรงกิริยาทุกแรงต้องมีแรงปฏิกิริยาซึ่งมีขนาดเท่ากันและทิศทางตรงข้ามกันเสมอ”หรือ action = reaction หมายความว่า เมื่อมีแรงกิริยากระทำต่อวัตถุใดก็จะมีแรงปฏิกิริยาจากวัตถุนั้นโดยมีขนาดแรงเท่ากันแต่กระทำกับวัตถุคนละก้อนเสมอ จึงนำแรงกิริยามาหักล้างกับแรงปฏิกิริยาไม่ได้ เช่น กรณีรถชนสุนัข แรงกิริยา คือ แรงที่รถชนสุนัข จึงทำให้สุนัขกระเด็นไป ในขณะเดียวกันจะมีแรงปฏิกิริยา ซึ่งเป็นแรงที่สุนัขชนรถ จึงทำให้รถบุบ จะเห็นว่าเสียหายทั้ง 2 ฝ่าย แสดงว่าแรงไม่หักล้างกัน ดังรูป

ข้อควรจำ ลักษณะสำคัญของแรงกิริยาแรงปฏิกิริยา

1. จะเกิดขึ้นพร้อมๆกันเสมอ

2. มีขนาดเท่ากัน

3. มีทิศทางตรงข้ามกัน

4. กระทำต่อวัตถุคนละก้อน

ที่มา อ้างอิง

https://sites.google.com/site/krumonieweewan/…/2-chnid-khxng-raeng-1

www.kmitl.ac.th/~ktbencha/project44/CAI/force/…/means.htm

เเรงที่กระทำต่อวัตถุ

112041085

แรง (force) เป็นสิ่งที่ทำให้วัตถุเปลี่ยนรูปร่าง เปลี่ยนทิศทาง เกิดการเคลื่อนที่หรือหรือหยุดนิ่งได้ แรงสามารถเปลี่ยนความเร็วของวัตถุได้ หรือกล่าวได้ว่าแรงทำให้วัตถุเกิดความเร่ง

ถ้ามีแรงขนาดเท่ากันกระทำต่อวัตถุในทิศทางตรงกันข้าม อาจจะทำให้เกิดการเปลี่ยนแปลงรูปร่างและขนาดของวัตถุ แต่ไม่มีการเคลื่อนที่ของวัตถุ

ลักษณะของแรง แรงเป็นปริมาณเวกเตอร์ มีทั้งขนาดและทิศทาง มีหน่วยเป็นนิวตัน (N) ใช้สัญลักษณ์ F เขียนแทนแรง การเขียนสัญลักษณ์ของแรงที่บอกทิศทางของแรงด้วยนั้น จะใช้ความยาวของเส้นตรงแทนขนาด และใช้หัวลูกศรแทนทิศทางของแรง เรียกว่า เวกเตอร์ของแรง

ใบความรู้ เรื่อง แรงแบบต่างๆ

แรงเคลื่อนที่และตำแหน่งของวัตถุ 

การเคลื่อนที่ของวัตถุมีการเคลื่อนที่แบบต่างๆ เช่น การเคลื่อนที่ในแนวตรง แนวโค้ง และการเคลื่อนที่เป็นวงกลม ซึ่งในการเคลื่อนที่นั้นระบุว่า วัตถุอยู่ที่ใดต้องกำหนดจุดอ้างอิง ระยะทางและทิศที่วัตถุนั้นห่างจากจุดอ้างอิง ซึ่งเรียกว่า การกระจัด ซึ่งการกระจัดเป็นปริมาณเวกเตอร์ โดยปริมาณเวกเตอร์เป็นปริมาณที่มีทั้งขนาดและทิศทาง เขียนแทนด้วยลูกศร ความยาวของลูกศรแทนขนาด และหัวลูกศรแทนทิศทาง วัตถุที่กำลังเคลื่อนที่จะเคลื่อนที่เร็วหรือช้า พิจารณาจากระยะทางที่ได้หรือการกระจัดที่ได้เทียบกับเวลาที่ใช้ในการเคลื่อนที่

การเคลื่อนที่แบบต่างๆ มีลักษณะเฉพาะของการเคลื่อนที่ 

  • การเคลื่อนที่แนวเส้นตรง : วัตถุจะเคลื่อนที่ในแนวเดิม (ทิศเดิมหรือทิศตรงข้าม) โดยอาจมีแรงกระทำต่อวัตถุหรือไม่ก็ได้ ถ้ามีแรงกระทำ ทิศของแรงที่กระทำจะอยู่ในแนวเดียวกับแนวการเคลื่อนที่ของวัตถุเสมอ

  • การเคลื่อนที่แนวโค้ง : วัตถุจะมีการเคลื่อนที่ 2 แนวพร้อมๆ กัน เช่น เคลื่อนที่ในแนวราบและในแนวดิ่ง แรงที่กระทำต่อวัตถุจีทิศคงตัวตลอดเวลา โดยทำมุมใดๆ กับทิศของความเร็ว เช่น แรงดึงดูดของโลก

  • การเคลื่อนที่วงกลม : วัตถุเคลื่อนที่เป็นส่วนโค้งรอบจุดๆ หนึ่ง โดยมีแรงกระทำในทิศเข้าสู่ศูนย์กลาง

  • การเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย : วัตถุจะเคลื่อนที่กลับไปมาซ้ำรอยเดิมโดยมีแอมพลิจูดคงตัว

 

แรงกับการเคลื่อนที่ของวัตถุ (แรงที่กระทำต่อวัตถุ)

การออกแรงกระทำต่อวัตถุอาจทำให้วัตถุเคลื่อนที่ได้ หรือวัตถุอาจไม่เคลื่อนที่ เนื่องจากมีแรงย่อยอื่นมาร่วมกระทำ ทำให้เกิดการหักล้างของแรงในปริมาณเวกเตอร์ ดังนั้นวัตถุที่จะเคลื่อนที่ได้หรือไม่ได้ก็ขึ้นอยู่กับแรงลัพธ์ที่มากระทำต่อวัตถุนั่นเอง

เมื่อออกแรงกระทำต่อวัตถุแล้ววัตถุไม่เคลื่อนที่ เนื่องจากถูกหักล้างด้วยแรงอื่นที่ร่วมกระทำต่อวัตถุนั้น แต่ไม่ว่าวัตถุนั้นจะเคลื่อนที่หรือไม่เคลื่อนที่ก็ตามจะเกิดแรงลัพธ์ของวัตถุเสมอ

แรงเป็นปริมาณที่มีขนาดและทิศทาง แรงจึงเป็นปริมาณเวกเตอร์ การรวมแรงต้องรวมแบบเวกเตอร์ ในการรวมแรงหลายๆ แรงที่กระทำต่อวัตถุ ถ้าผลรวมของแรงที่ได้เป็นศูนย์แสดงว่า วัตถุนั้นอยู่ในสภาพสมดุล เมื่อปล่อยวัตถุ วัตถุนั้นจะตกลงสู่พื้นดิน แสดงว่ามีแรงกระทำต่อวัตถุ ซึ่งแรงนั้นเกิดจากแรงดึงดูดที่โลกกระทำต่อวัตถุ หรือที่เรียกว่า แรงโน้มถ่วงของโลก หรือน้ำหนักของวัตถุนั่นเอง แรงโน้มถ่วงนี้จะมีค่ามากหรือน้อยขึ้นอยู่กับมวลของวัตถุ ในการลากวัตถุให้เคลื่อนที่ไปบนพื้นผิวจะมีแรงต้านการเคลื่อนที่ เรียกแรงนี้ว่า แรงเสียดทาน ซึ่งแรงเสียดทานจะมีค่ามากหรือน้อยขึ้นอยู่กับลักษณะผิวสัมผัสระหว่างวัตถุทั้งสองและแรงที่วัตถุกดพื้น กิจกรรมบางอย่างต้องการให้ผิวสัมผัสมีแรงเสียดทาน แต่กิจกรรมบางอย่างต้องการลดแรงเสียดทานระหว่างผิวสัมผัส

เมื่อออกแรงแล้วทำให้วัตถุเคลื่อนที่ไปตามแนวแรงนั้น เรียกว่า มีการทำงาน คำนวณหาค่าของงานที่ทำได้จากผลคูณของแรงและระยะทางในแนวเดียวกันกับแรง และกำหนดให้งานที่ทำได้ในหนึ่งหน่วยเวลา คือ กำลัง

ในบางกรณี เมื่อออกแรงกระทำต่อวัตถุอาจทำให้วัตถุหมุน เรียกว่าเกิดโมเมนต์ของแรง ซึ่งเกิดเมื่อแรงที่กระทำมีทิศตั้งฉากกับระยะทางจากจุดหมุนไปยังแนวแรง การหมุนนี้มีทั้งหมุนในทิศตามเข็มนาฬิกา และทวนเข็มนาฬิกา โดยถ้าผลรวมของโมเมนต์ตามเข็มนาฬิกาเท่ากับผลรวมของโมเมนต์ทวนเข็มนาฬิกา วัตถุจะอยู่ในสภาพสมดุล

เมื่อมีแรงกระทำต่อวัตถุทำให้วัตถุเคลื่อนที่สามารถวัดอัตราเร็วหรือขนาดของความเร็วของการเคลื่อนที่ได้จากการใช้เครื่องเคาะสัญญาณเวลา วัตถุที่เคลื่อนที่โดยมีความเร็วเปลี่ยนไป เรียกว่า วัตถุเคลื่อนที่โดยมีความเร่ง โดยความเร่งจะมีทิศเดียวกับทิศของแรงลัพธ์ที่กระทำต่อวัตถุ

การเคลื่อนที่ของวัตถุนอกจากจะเคลื่อนที่ในแนวตรงแล้ว ยังมีการเคลื่อนที่แบบอื่นอีก เช่น การเคลื่อนที่แบบโพรเจคไทล์ ซึ่งเป็นการเคลื่อนที่แนวโค้ง โดยได้ระยะทางในแนวราบและแนวดิ่งพร้อมๆ กัน การเคลื่อนที่ในแนววงกลม เป็นการเคลื่อนที่ที่มีแรงกระทำต่อวัตถุในทิศเข้าสู่ศูนย์กลาง

แรงชนิดต่าง

แรงลัพธ์ หรือแรงรวม หมายถึง ผลรวมของแรงย่อยแบบเวกเตอร์ของแรงทั้งหมดที่กระทำต่อวัตถุ ถ้าแรงลัพธ์มีค่าเป็นศูนย์ แสดงว่าวัตถุไม่มีการเคลื่อนที่อันเนื่องมาจากแรงที่มากระทำต่อวัตถุ

 


แรงย่อย หมายถึง แรงที่เป็นองค์ประกอบของแรงลัพธ์

การหาค่าแรงลัพธ์จากเวกเตอร์

  1. เมื่อแรงย่อยมีทิศทางเดียวกัน ให้นำแรงย่อยมารวมกัน สามารถเขียนเวกเตอร์แทนแรงได้ด้วยเส้นตรงและหัวลูกศร
     

 

  1. เมื่อแรงย่อยมีทิศทางตรงกันข้าม ให้นำค่าของแรงย่อยมาหักล้างกัน เวกเตอร์ของแรงลัพธ์จะมีทิศไปทางแรงที่มากกว่า ค่าของแรงลัพธ์เท่ากับผลต่างของแรงย่อยทั้งสอง
     

 

  1. ถ้าแรงย่อยเท่ากัน แต่มีทิศทางตรงข้าม จะได้แรงลัพธ์มีค่าเป็นศูนย์และไม่มีความเร่ง ดังนั้นวัตถุจะคงสภาพเดิม
     


การเขียนปริมาณเวกเตอร์ เขียนแทนด้วยเส้นตรงที่มีหัวลูกศรกำกับความยาวของเส้นตรงแทนขนาดของเวกเตอร์ และหัวลูกศรแทนทิศทางของเวกเตอร์ การเขียนสัญลักษณ์ของเวกเตอร์เขียนได้หลายแบบ เช่น เวกเตอร์ A สามารถเขียนสัญลักษณ์แทนเป็น  หรือ a

การหาแรงรวมหรือแรงลัพธ์ด้วยการเขียนรูป

  1. ใช้เส้นตรงแทนขนาดของแรงและใช้ลูกศรแทนทิศของแรง

 

  1. เริ่มต้นด้วยแรงตัวที่ 1 แล้วนำแรงตัวที่ 2 มาชนโดยให้หางลูกศรของแรงตัวที่ 1 ชนกับหัวลูกศรของแรงตัวที่ 1 ต่อกันเช่นนี้เรื่อยไป
 


แรงโน้มถ่วงของโลก

จากกฏความโน้มถ่วงของนิวตัน แรงโน้มถ่วง (gravity) ของโลกที่กระทำกับวัตถุมวลใดๆ ในที่นี้จะศึกษาความสัมพันธ์ระหว่างมวลและน้ำหนักของมวล ว่า แรงสามารถทำให้วัตถุเปลี่ยนรูปร่างหรือเปลี่ยนสภาพการเคลื่อนที่ เช่น ถ้าปล่อยมือจากวัตถุที่ถือไว้ วัตถุจะเปลี่ยนแปลงสภาพการเคลื่อนที่ตกลงสู่พื้นเนื่องจากมีแรงดึงดูดของโลกที่กระทำต่อวัตถุ หรือที่เรียกว่า แรงโน้มถ่วงของโลก โดยแรงนี้จะมีค่ามากหรือน้อยนั้นขึ้นอยู่กับมวลของวัตถุนั้นๆ โดยวัตถุที่มีมวลมากก็จะมีน้ำหนักมาก วัตถุที่มีมวลน้อยก็จะมีน้ำหนักน้อย

ประโยชน์ที่ได้จากแรงโน้มถ่วงของโลก เช่น ทำให้วัตถุต่างๆ ไม่ลอยออกไปนอกโลก ทำให้น้ำไหลจากที่สูงลงสู่ที่ต่ำและใช้พลังงานของน้ำในการผลิตกระแสไฟฟ้า

มวล คือ ปริมาณเนื้อของสารซึ่งมีค่าคงตัว มีหน่วยเป็นกิโลกรัม

น้ำหนัก ของวัตถุบนโลก เกิดจากแรงดึงดูดระหว่างมวลของวัตถุและโลก

 


น้ำหนักของวัตถุชิ้นหนึ่งๆ เมื่อชั่งในปริมาณต่างกันจะมีค่าต่างกัน โดยน้ำหนักของมวล 1 กิโลกรัมที่บริเวณเส้นศูนย์สูตรมีค่าประมาณ 9.78 นิวตัน ในขณะที่น้ำหนักของมวล 1 กิโลกรัม ที่บริเวณขั้วโลกมีค่าประมาณ 9.83 นิวตัน

แรงเสียดทาน

แรงเสียดทาน (friction) หมายถึง แรงที่ต่อต้านการเคลื่อนที่ของวัตถุ แรงเสียดทานเกิดขึ้นระหว่างผิวสัมผัสของวัตถุกับผิวของพื้น เช่น เมื่อเราเข็นรถเข็นเด็ก

 


ปัจจัยที่มีผลต่อแรงเสียดทาน คือ

  1. น้ำหนักของวัตถุ วัตถุที่มีน้ำหนักกดทับลงบนพื้นผิวมากจะมีแรงเสียดทานมากกว่าวัตถุที่มีน้ำหนักกดทับลงบนพื้นผิวน้อย

 

  1. พื้นผิวสัมผัส ผิวสัมผัสที่เรียบจะเกิดแรงเสียดทานน้อยกว่าผิวสัมผัสที่ขรุขระจากนั้นน้องๆ ดูการทดลองเรื่องแรงต้านทานการเคลื่อนที่ของวัตถุ ดังนี้
 


จากสรุปจากผลการทดลอง ได้ว่า “แรงต้านการเคลื่อนที่ของวัตถุที่เกิดขึ้นบริเวณผิวสัมผัสของวัตถุทั้งสองขณะเคลื่อนที่ คือ แรงเสียดทาน”

นอกจากนี้ แรงเสียดทานจะมีค่าเปลี่ยนไปเมื่อลักษณะผิวสัมผัสระหว่างวัตถุเปลี่ยนไป โดยถ้าผิวสัมผัสเป็นผิวหยาบหรือขรุขระ แรงเสียดทานจะมีค่ามาก แต่ถ้าผิวสัมผัสเรียบหรือลื่น แรงเสียดทานจะมีค่าน้อย

ความต่างมวลของวัตถุกับแรงเสียดทาน

“แรงเสียดทานจะมีค่าเพิ่มขึ้น เมื่อจำนวนถุงทรายเพิ่มขึ้น เพราะเมื่อจำนวนถุงทรายเพิ่มขึ้น แรงที่ถุงทรายกดพื้นก็จะมากขึ้นด้วย แสดงว่า แรงเสียดทานระหว่างวัตถุคู่หนึ่งๆ จะมากขึ้นกับแรงที่วัตถุกดพื้นมีค่ามากขึ้น

ประเภทของแรงเสียดทาน

แรงเสียดทานแบ่งออกเป็น 2 ประเภท คือ

  • แรงเสียดทานสถิต (fs) เป็นแรงเสียดทานที่เกิดขึ้นในขณะที่วัตถุอยู่นิ่ง จนถึงเริ่มต้นเคลื่อนที่

 

  • แรงเสียดทานจลน์ (fk) เป็นแรงเสียดทานขณะวัตถุกำลังเคลื่อนที่ด้วยความเร็วคงตัว ซึ่งจะมีค่าน้อยกว่าแรงเสียดทานสถิต

ค่าสัมประสิทธิ์ของแรงเสียดทาน เป็นค่าตัวเลขที่แสดงว่าเกิดแรงเสียดทานขึ้นระหว่างผิวสัมผัสของวัตถุ 2 สิ่ง มากน้อยเพียงใด ใช้สัญลักษณ์แทนด้วยตัวอักษร µ (มิว) 

สูตรการหาค่าสัมประสิทธิ์ของแรงเสียดทาน (µ) ดังนี้

 


ตัวอย่าง การหาค่าสัมประสิทธิ์ของแรงเสียดทาน

แรงเสียดทานมีทั้งประโยชน์และโทษ บางครั้งในชีวิตประจำวันเราก็ได้ประโยชน์จากแรงเสียดทาน การเกิดความฝืดช่วยในการเดินได้เร็วและไม่ลื่น เป็นต้น

ประโยชน์และโทษของแรงเสียดทาน

มนุษย์เรามีความรู้เกี่ยวกับแรงเสียดทานมาใช้ประโยชน์ เพื่ออำนวยความสะดวกในชีวิตประจำวัน ดังนี้

  1. ช่วยให้รถเคลื่อนที่ไปข้างหน้าได้ ยางรถจึงมีร่องยางช่วยเพิ่มประสิทธิภาพการยึดเกาะถนนที่เรียกว่า ดอกยาง

 

  1. ช่วยให้รถถอยหลังได้ ยางรถยนต์จึงมีลวดลายดอกยางเพื่อช่วยในการยึดเกาะถนน

 

  1. การเดินบนพื้นต้องอาศัยแรงเสียดทาน จึงควรใช้รองเท้าที่มีพื้นเป็นยางและมีลวดลายขรุขระ ไม่ควรใช้รองเท้าแบบพื้นเรียบ แรงเสียดทานน้อยจะทำให้ลื่น

 

  1. นักวิ่งเร็วที่ใช้รองเท้าพื้นตะปู เพื่อเพิ่มแรงเสียดทาน ทำให้มีแรงยึดเกาะกับพื้นผิวลู่วิ่งช่วยให้วิ่งได้เร็วขึ้น

โทษของแรงเสียดทาน

แรงเสียดทานทำให้สิ้นเปลืองพลังงานและทำให้เกิดการสึกหรอของอุปกรณ์ต่างๆ ในเครื่องจักร ดังนั้นการหาวิธีลดแรงเสียดทาน เพื่อรักษาประสิทธิภาพในการทำงานของเครื่องจักรกลทั้งหลาย คือ

 


โมเมนต์

โมเมนต์ (moment) เป็นความสามารถของแรงในการหมุนวัตถุรอบจุดหมุน ขนาดของโมเมนต์หาได้จาก แรงคูณกับระยะทางตั้งฉากจากจุดที่แรงกระทำไปยังจุดหมุน

 


เมื่อมีแรงภายนอกมากระทำต่อวัตถุ โดยแนวแรงไม่ผ่านจุดศูนย์กลางมวล วัตถุนั้นจะหมุนรอบๆ จุดศูนย์กลางมวล ผลของการเกิดขึ้นเรียกว่า โมเมนต์

เช่น การปั่นจักรยาน การเปิดฝาขวด การเปิดประตู เป็นต้น

 


โมเมนต์ เป็นผลคูณของแรงกับระยะทางในแนวตั้งฉากจากจุดที่แรงกระทำไปยังจุดหมุนหน่วยของโมเมนต์ คือ

  • นิวตัน.เมตร (N.m)

ชนิดของโมเมนต์จำแนกตามลักษณะของการหมุน คือ

 


กฎของโมเมนต์

เมื่อวัตถุหนึ่งถูกกระทำด้วยแรงหลายแรง ซึ่งแรงกระทำนั้นๆ ทำให้วัตถุอยู่ในภาวะสมดุล (ไม่เคลื่อนที่และไม่หมุน) พบว่า

ผลรวมของโมเมนต์ทวนเข็มนาฬิกา  =  ผลรวมของโมเมนต์ตามเข็มนาฬิกา
 


การนำหลักโมเมนต์ไปใช้ประโยชน์กับเครื่องกลประเภทคาน และได้แบ่งตามตำแหน่งของจุดหมุน แรงพยายาม และแรงต้านทานเป็น 3 อันดับ คือ

  • จุดหมุนอยู่ระหว่างแรงพยายามและแรงต้าน (คานอันดับ 1)

 

  • แรงต้านทานอยู่ระหว่างจุดหมุนและแรงพยายาม (คานอันดับ 2)

 

  • แรงพยายามอยู่ระหว่างแรงต้านทานและจุดหมุน (คานอันดับ 3)
 


จากนั้นน้องๆ ดูสิ่งที่ประดิษฐ์ขึ้น เพื่อใช้ในการผ่อนแรงเหล่านี้ เช่น คาน ชะแลง กรรไกร เป็นต้น ว่าเป็นสิ่งประดิษฐ์ที่ใช้หลักเรื่องโมเมนต์และคานมาใช้ประโยชน์ในชีวิตประจำวันโดยการนำมาใช้เพื่อช่วยในการผ่อนแรง และทำให้ทำงานได้สะดวกยิ่งขึ้น

 


จากหลักของโมเมนต์น้องๆ จะสังเกตได้ว่า ถึงแม้จะมีแรงที่ต่างกันมากระทำต่อคานทั้ง 2 ข้างของจุดหมุน แต่ก็ยังสามารถปรับคานให้สมดุลได้ โดยอาศัยหลักของความสัมพันธ์ระหว่างแรงที่กระทำกับระยะจากจุดที่แรงกระทำถึงจุดหมุน ซึ่งสามารถนำหลักการนี้ไปใช้ผ่อนแรงในการยกวัตถุที่มีน้ำหนักมากได้

    แหล่งที่มา http://www.myfirstbrain.com/student_view.aspx?ID=73799

1 2