เเรง

แรง (force)   หมายถึง   สิ่งที่ไปกระทำต่อวัตถุ    แล้วทำให้วัตถุนั้นเกิดการเปลี่ยนแปลงสภาพ     ของวัตถุ เช่น  เปลี่ยนทิศทางการเคลื่อนที่ เปลี่ยนขนาดของอัตราเร็ว หรือเปลี่ยนขนาด รูปร่างของวัตถุ
แรง มีหน่วย เป็น นิวตัน (N) (เป็นการให้เกียรติแก่เซอร์ไอแซค นิวตัน ผู้ค้นพบแรงโน้มถ่วงของโลก) แรง เป็น ปริมาณเวกเตอร์ ซึ่งมีขนาดและทิศทางสัญลักษณ์ที่เขียนแทนแรง คือ

เวกเตอร์ของแรง
            ปริมาณบางปริมาณที่ใช้กันอยู่ในชีวิตประจำวันบอกเฉพาะขนาดเพียงอย่างเดียวก็ได้ความหมายสมบูรณ์แล้ว แต่บางปริมาณจะต้องบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ ปริมาณในทางฟิสิกส์แบ่งออกเป็น 2 ประเภท คือ
1. ปริมาณสเกลาร์ (scalar quantity) คือ ปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายที่สมบูรณ์ โดยไม่ต้องบอกทิศทาง เช่น เวลา ระยะทาง มวล พลังงาน งาน ปริมาตร ฯลฯ ในการหาผลลัพธ์ของปริมาณสเกลาร์ทำได้โดยอาศัยหลักทางพีชคณิต คือ ใช้วิธีการบวก ลบ คูณ หาร
2. ปริมาณเวกเตอร์ (vector quantity) คือ ปริมาณที่ต้องการบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ เช่น ความเร็ว ความเร่ง การกระจัด โมเมนตัม แรง ฯลฯ

    การเคลื่อนที่แบบต่างๆ ในชีวิตประจำวัน
3.1 การเคลื่อนที่แบบวงกลม
หมายถึง การเคลื่อนที่ของวัตถุเป็นวงกลมรอบศูนย์กลาง เกิดขึ้นเนื่องจากวัตถุที่กำลังเคลื่อนที่จะเดินทางเป็นเส้นตรงเสมอ แต่ขณะนั้นมีแรงดึงวัตถุเข้าสู่ศูนย์กลางของวงกลม เรียกว่า แรงเข้าสู่ศูนย์กลางการเคลื่อนที่ จึงทำให้วัตถุเคลื่อนที่เป็นวงกลมรอบศูนย์กลาง เช่น การโคจรของดวงจันทร์รอบโลก

 

แรงในแบบต่างๆ

  1. ชนิดของแรง

      1.1 แรงย่อย คือ แรงที่เป็นส่วนประกอบของแรงลัพธ์
    1.2 แรงลัพธ์ คือ แรงรวมซึ่งเป็นผลรวมของแรงย่อย ซึ่งจะต้องเป็นการรวมกันแบบปริมาณเวกเตอร์
    1.3 แรงขนาน คือ แรงที่ที่มีทิศทางขนานกัน ซึ่งอาจกระทำที่จุดเดียวกันหรือต่างจุดกันก็ได้ มีอยู่ 2 ชนิด
    – แรงขนานพวกเดียวกัน หมายถึง แรงขนานที่มีทิศทางไปทางเดียวกัน
    – แรงขนานต่างพวกกัน หมายถึง แรงขนานที่มีทิศทางตรงข้ามกัน
    1.4 แรงหมุน หมายถึง แรงที่กระทำต่อวัตถุ ทำให้วัตถุเคลื่อนที่โดยหมุนรอบจุดหมุน ผลของการหมุนของ เรียกว่า โมเมนต์         เช่น การปิด-เปิด ประตูหน้าต่าง
      1.5 แรงคู่ควบ คือ แรงขนานต่างพวกกันคู่หนึ่งที่มีขนาดเท่ากัน แรงลัพธ์มีค่าเป็นศูนย์ และวัตถุที่ถูกแรงคู่ควบกระทำ 1 คู่               กระทำ จะไม่อยู่นิ่งแต่จะเกิดแรงหมุน
      1.6 แรงดึง คือ แรงที่เกิดจากการเกร็งตัวเพื่อต่อต้านแรงกระทำของวัตถุ เป็นแรงที่เกิดในวัตถุที่ลักษณะยาวๆ เช่น เส้นเชือก         เส้นลวด
      1.7 แรงสู่ศูนย์กลาง หมายถึง แรงที่มีทิศเข้าสู่ศูนย์กลางของวงกลมหรือทรงกลมอันหนึ่งๆ เสมอ
      1.8 แรงต้าน คือ แรงที่มีทิศทางต่อต้านการเคลื่อนที่หรือทิศทางตรงข้ามกับแรงที่พยายามจะทำให้วัตถุเกิดการเคลื่อนที่             เช่น แรงต้านของอากาศ แรงเสียดทาน
      1.9 แรงโน้มถ่วงของโลก คือ แรงดึงดูดที่มวลของโลกกระทำกับมวลของวัตถุ เพื่อดึงดูดวัตถุนั้นเข้าสู่ศูนย์กลางของโลก
    – น้ำหนักของวัตถุ เกิดจากความเร่งเนื่องจากความโน้มถ่วงของโลกมากกระทำต่อวัตถุ
      1.10 แรงกิริยาและแรงปฏิกิริยา
    – แรงกิริยา คือ แรงที่กระทำต่อวัตถุที่จุดจุดหนึ่ง อาจเป็นแรงเพียงแรงเดียวหรือแรงลัพธ์ของแรงย่อยก็ได้
    – แรงปฏิกิริยา คือ แรงที่กระทำตอบโต้ต่อแรงกิริยาที่จุดเดียวกัน โดยมีขนาดเท่ากับแรงกิริยา แต่ทิศทางของแรงทั้ง             สองจะตรงข้ามกัน
     2. แรงกิริยาและแรงปฏิกิริยากับการเคลื่อนที่ของวัตถุ
    2.1 วัตถุเคลื่อนที่ด้วยแรงกิริยา เป็นการเคลื่อนที่ของวัตถุตามแรงที่กระทำ เช่น การขว้างลูกหินออกไป
    2.2 วัตถุเคลื่อนที่ด้วยแรงปฏิกิริยา เป็นการเคลื่อนที่ของวัตถุเนื่องจากมีแรงขับดันวัตถุให้เคลื่อนที่ไปในทิศทางตรงกัน ข้าม เช่น การเคลื่อนที่ของจรวด

     แรงเสียดทาน

  1. ความหมายของแรงเสียดทาน
    แรงเสียดทาน คือ แรงที่ต้านการเคลื่อนที่ของวัตถุซึ่งเกิดขึ้นระหว่างผิวสัมผัสของวัตถุ เกิดขึ้นทั้งวัตถุที่เคลื่อนที่และไม่เคลื่อนที่ และจะมีทิศทางตรงกันข้ามกับการเคลื่อนที่ของวัตถุ

แรงเสียดทานมี 2 ประเภท คือ
1. แรงเสียดทานสถิต คือ แรงเสียดทานที่เกิดขึ้นระหว่างผิวสัมผัสของวัตถุในสภาวะที่วัตถุได้รับแรงกระทำแล้วอยู่นิ่ง
2. แรงเสียดทานจลน์ คือ แรงเสียดทานที่เกิดขึ้นระหว่างผิวสัมผัสของวัตถุในสภาวะที่วัตถุได้รับแรงกระทำแล้วเกิดการเคลื่อนที่ด้วยความเร็วคงที่
2. การลดและเพิ่มแรงเสียดทาน
         การลดแรงเสียดทาน สามารถทำได้หลายวิธี
1. การขัดถูผิววัตถุให้เรียบและลื่น
2. การใช้สารล่อลื่น เช่น น้ำมัน
3. การใช้อุปกรณ์ต่างๆ เช่น ล้อ ตลับลูกปืน และบุช
4. ลดแรงกดระหว่างผิวสัมผัส เช่น ลดจำนวนสิ่งที่บรรทุกให้น้อยลง
5. ออกแบบรูปร่างยานพาหนะให้อากาศไหลผ่านได้ดี
      การเพิ่มแรงเสียดทาน สามารถทำได้หลายวิธี
 1. การทำลวดลาย เพื่อให้ผิวขรุขระ
2. การเพิ่มผิวสัมผัส เช่น การออกแบบหน้ายางรถยนต์ให้มีหน้ากว้างพอเหมาะ


     

            โมเมนต์ของแรง

  1. ความหมายของโมเมนต์
            โมเมนต์ของแรง(Moment of Force)หรือโมเมนต์(Moment) หมายถึง ผลของแรงที่กระทำต่อวัตถุหมุนไปรอบจุดหมุน ดังนั้น ค่าโมเมนต์ของแรง ก็คือ ผลคูณของแรงนั้นกับระยะตั้งฉากจากแนวแรงถึงจุดหมุน (มีหน่วยเป็น นิวตัน-เมตร แต่หน่วย กิโลกรัม-เมตร และ กรัม-เซนติเมตร ก็ใช้ได้ในการคำนวน)

โมเมนต์ (นิวตัน-เมตร) =  แรง(นิวตัน) X ระยะตั้งฉากจากแนวแรงถึงจุดหมุน (เมตร)

  1. ชนิดของโมเมนต์
    โมเมนต์ของแรงแบ่งตามทิศการหมุนได้เป็น 2 ชนิด
             1. โมเมนต์ทวนเข็มนาฬิกา  คือ  โมเมนต์ของแรงที่ทำให้วัตถุหมุนทวนเข็มนาฬิกา
             2. โมเมนต์ตามเข็มนาฬิกา  คือ  โมเมนต์ของแรงที่ทำให้วัตถุหมุนตามเข็มนาฬิกา
       3. หลักการของโมเมนต์
    ถ้ามีแรงหลายแรงกระทำต่อวัตถุชิ้นหนึ่ง แล้วทำให้วัตถุนั้นสมดุลจะได้ว่า
ผลรวมของโมเมนต์ทวนเข็มนาฬิกา =   ผลรวมของโมเมนต์ตามเข็มนาฬิกา
 M ตาม =    M ทวน
  F1 x L1 =  F2 x L2

      การนำหลักการเกี่ยวกับโมเมนต์ไปใช้ประโยชน์
โมเมนต์ หมายถึง ผลของแรงซึ่งกระทำต่อวัตถุ เพื่อให้วัตถุหมุนไปรอบจุดหมุน
ความรู้เกี่ยวกับโมเมนต์ของแรง สมดุลของการหมุน และโมเมนต์ของแรงคู่ควบถูกนำมาใช้ประโยชน์ในด้านต่าง ๆ มากมาย โดยเฉพาะการประดิษฐ์เครื่องผ่อนแรงชนิดต่าง ๆ
คาน เป็นวัตถุแข็ง ใช้ดีด – งัดวัตถุให้เคลื่อนที่รอบจุด ๆ หนึ่ง ทำงานโดยใช้หลักของโมเมนต์
นักวิทยาศาสตร์ใช้หลักการของโมเมนต์มาประดิษฐ์คาน ผู้รู้จักใช้คานให้เป็นประโยชน์คนแรก คือ
อาร์คีเมเดส ซึ่งเป็นนักปราชญ์กรีกโบราณ เขากล่าวว่า “ถ้าฉันมีจุดค้ำและคานงัดที่ต้องการได้ละก็ ฉันจะงัดโลกให้ลอยขึ้น”

คานดีด คานงัด แบ่งออกได้ 3 ระดับ

คานอันดับ 1 จุดหมุน (F) อยู่ในระหว่าง แรงต้านของวัตถุ (W) กับ แรงพยายาม (E)
ได้แก่ ชะแลง คีมตัดลวด กรรไกรตัดผ้า ตาชั่งจีน ค้อนถอนตะปู ไม้กระดก ฯลฯ

คานอันดับ 2  แรงต้านของวัตถุ (W) อยู่ระหว่าง จุดหมุน (F) กับ แรงพยายาม (E)
ได้แก่ เครื่องตัดกระดาษ เครื่องกระเทาะเม็ดมะม่วงหิมพานต์ รถเข็นดิน อุปกรณ์หนีบกล้วย ที่เปิดขวดน้ำอัดลม

คานอันดับ 3  แรงพยายาม (E) อยู่ในระหว่าง จุดหมุน (F) กับ แรงพยายามของวัตถุ (W)
ได้แก่ คันเบ็ด แขนมนุษย์ แหนบ พลั่ว ตะเกียบ ช้อน ฯลฯ

    ตัวอย่างที่ 1   คานยาว  2  เมตร  นำเชือกผูกปลายคานด้านซ้าย  0.8 เมตร แขวนติดกับเพดาน มีวัตถุ  30 กิโลกรัมแขวนที่ปลายด้านซ้าย    ถ้าต้องการให้คานสมดุลจะต้องใช้วัตถุกี่กิโลกรัมแขวนที่ปลายด้านขวา (คายเบาไม่คิดน้ำหนัก)

เมื่อให้ O เป็นจุดหมุน เมื่อคายสมดุลจะได้

ผลรวมของโมเมนต์ทวนเข็มนาฬิกา =   ผลรวมของโมเมนต์ตามเข็มนาฬิกา
 M ตาม =    M ทวน
3 x 0.8 =    W X 1.2
W =     20 kg

ตอบ   ดังนั้น จะต้องใช้วัตถุ  20  กิโลกรัม  แขวนที่ปลายด้านขวา

ตัวอย่าง 2  คานสม่ำเสมอยาว  1  เมตร  คานมีมวล  2  กิโลกรัม   ถ้าแขวนวัตถุหนัก  40 และ  60  กิโลกรัมที่ปลายแต่ละข้าง

จะต้องใช้เชือกแขวนคานที่จุดใดคานจึงจะสมดุล

ผลรวมของโมเมนต์ทวนเข็มนาฬิกา =   ผลรวมของโมเมนต์ตามเข็มนาฬิกา
 M ตาม =    M ทวน
 (40 x X) +  (2 x ( X – 0.5)) =   60 x ( 1-X )
40 X + 2X  – 1 =   60 – 60X
40X + 2X +60X =   60 + 1
102X =   61
X =   0.6 m
   

ตอบ     ต้องแขวนเชือกห่างจากจุก A  เป็นระยะ  0.6  เมตร

  1. โมเมนต์ในชีวิตประจำวัน
    โมเมนต์เกี่ยวข้องกับกิจกรรมต่างๆ ในชีวิตประจำวันของเราเป็นอย่างมาก แม้แต่การเคลื่อนไหวของอวัยวะบางส่วนของร่างกาย การใช้เครื่องใช้หรืออุปกรณ์ต่างๆ หลายชนิด เช่น
  2. ประโยชน์โมเมนต์
    จากหลักการของโมเมนต์จะพบว่า เมื่อมีแรงขนาดต่างกันมากระทำต่อวัตถุคนละด้านกับจุดหมุนที่ระยะห่างจากจุดหมุนต่างกัน วัตถุนั้นก็สามารถอยู่ในภาวะสมดุลได้ หลักการของโมเมนต์จึงช่วยให้เราออกแรงน้อยๆ แต่สามารถยกน้ำหนักมากๆ ได้

เเรง

การทำกิจกรรมต่างๆ ในชีวิตประจำวันของเรานั้น จำเป็นต้องมีแรงเข้ามาเกี่ยวข้องเกือบตลอดเวลา ไม่ว่าจะเป็นการเรียนหนังสือ เล่นกีฬา ทำงานบ้าน หรือกิจกรรมใดๆก็ตามแรงมีผลทำให้วัตถุเกิดการเปลี่ยนแปลง อาจมีขนาด รูปร่างเปลี่ยนไป หรือเปลี่ยนแปลงสภาพการเคลื่อนที่ ซึ่งขึ้นอยู่กับขนาดและทิศทางของแรงที่มากระทำต่อวัตถุ โดยแรงที่มากระทำต่อวัตถุอาจเป็นแรงเดียวหรือหลายแรง ในกรณที่มีหลายแรงจะต้องหาผลรวมของแรงทั้งหมด เรียกว่า แรงลัพธ์
ความหมายของแรง
แรง คือ ปริมาณที่กระทำต่อวัตถุอาจทำให้วัตถุเกิดการเปลี่ยนแปลงทางกายภาพต่างๆซึ่งเป็นการถ่ายเทพลังงานจากตัวเราหรือจากแหล่งกำเนิดพลังงานไปยังวัตถุสิ่งของ เป็นผลทำให้วัตถุเกิดการเปลี่ยนแปลงใน 4 ลักษณะ คือ 1. วัตถุที่หยุดนิ่งอาจเริ่มเคลื่อนที่ได้
2. ความเร็วของวัตถุที่กำลังเคลื่อนที่อาจเปลี่ยนแปลงได้
3. ทิศทางการเคลื่อนที่ของวัตถุอาจเปลี่ยนแปลงได้
4. วัตถุอาจมีขนาดและรูปร่างเปลี่ยนแปลงไปจากเดิม

58973.gif

 

แรงลัพธ์

ในกรณีที่มีแรงกระทำกับวัตถุ 2 แรงขึ้นไป ไม่ว่าจะเป็นแรงจากทิศทางเดียวกันหรือทิศทางตรงกันข้าม หรือแรงหลายทิศทางพร้อมๆกัน เพื่อให้ง่ายต่อการอธิบายการเปลี่ยนแปลงต่างๆของวัตถุ จึงจำเป็นต้องหาผลรวมของขนาดและทิศทางของแรงทั้งหมด หรือแรงลัพธ์สำหรับการอธิบายการเปลี่ยนแปลงนั้น ซึ่งการหาแรงลัพธ์ในระนาบเดียวกนสามารถหาได้ ดังนี้

  1. การหาแรงลัพธ์ของแรงที่กระทำต่อวัตถุในทิศทางเดียวกัน

F = F1 + F2 เมื่อ F1 = แรงย่อที่ 1
F2 = แรงย่อที่ 2
F = แรงลัพธ์

  1. การหาแรงลัพธ์ของแรงที่กระทำต่อวัตถุในทิศทางตรงกันข้าม
  2. F = F1 – F2 เมื่อ F1 = แรงย่อที่ 1

F2 = แรงย่อที่ 2
F = แรงลัพธ์
ในกรณีที่แรงลัพธ์กระทำกับวัตถุเป็นศูนย์ วัตถุจะรักษาสภาพการเคลื่อนที่เดิมเอาไว้ ซึ่งสามารถแบ่งได้ 2 กรณีดังนี้

  1. แรงลัพธ์มีค่าเป็นศูนย์กระทำกับวัตถุหยุดนิ่ง วัตถุจะรักษาสภาพการหยุดนิ่งเอา หรือ ไม่เปลี่ยนแปลงสภาพการเคลื่อนที่ กล่าวได้ว่า วัตถุอยู่ในสภาพสมดุล
  2. แรงลัพธ์มีค่าเป็นศูนย์กระทำกับวัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่ง วัตถุจะรักษาสภาพการเคลื่อนที่เดิมเอาไว้และจะเคลื่อนที่ไปในทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป
58973.gif

 

แรงที่กระทำต่อวัตถุ

 

-ความเร่งและผลของแรงลัพธ์ที่กระทำต่อวัตถุ

กฎการเคลื่อนที่ของนิวตัน

เซอร์ไอแซก นิวตัน (Sir Issac Newton) นักฟิสิกส์ ชาวอังกฤษ ได้สรุปเกี่ยวกับการเคลื่อนที่ของวัตถุทั้งที่อยู่ในสภาพอยู่นิ่งและในสภาพเคลื่อนที่เป็นกฎการเคลื่อนที่ของนิวตัน ซึ่งสามารถทำให้เราเข้าใจการเคลื่อนที่ต่างๆ ได้ทั้งหมด กฎของนิวตันมี 3 ข้อ ได้แก่
 1. กฎการเคลื่อนที่ข้อที่หนึ่งของนิวตัน หรืออาจเรียกว่า กฎแห่งความเฉื่อย (inertia law) กล่าวว่า “วัตถุจะคงสภาพอยู่นิ่ง หรือสภาพเคลื่อนที่ด้วยความเร็วคงตัวในแนวตรง นอกจากจะมีแรงลัพธ์ซึ่งมีค่าไม่เป็นศูนย์มากระทำ” หรือสรุปเป็นสมการ ดังนี้

จากกฎการเคลื่อนที่ข้อที่ 1 ของนิวตันอธิบายได้ว่า ถ้ามีวัตถุวางนิ่งอยู่บนพื้นราบแล้วไม่มีแรงใดมากระทำต่อวัตถุ วัตถุก็ยังคงอยู่นิ่งเช่นเดิมต่อไป หรือถ้ามีแรงสองแรงมากระทำต่อวัตถุโดยแรงทั้งสองมีขนาดเท่ากันแต่ทิศทางตรงข้ามกันจะพบว่า วัตถุยังคงหยุดนิ่งเช่นเดิม จึงสรุปได้ว่า “วัตถุที่อยู่นิ่งถ้าไม่มีแรงภายนอก อื่นใดมากระทำต่อวัตถุหรือมีแรงภายนอกหลายแรงมากระทำต่อวัตถุ แต่แรงลัพธ์เหล่านั้นเป็นศูนย์แล้ววัตถุนั้นยังคงรักษาสภาพนิ่งไว้อย่างเดิม” ดังรูป

หรือถ้าพิจารณาวัตถุที่กำลังเคลื่อนที่บนพื้นระดับราบลื่นซึ่งไม่มีแรงภายนอกใดมากระทำต่อวัตถุ วัตถุก็จะรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวค่าหนึ่ง หรือถ้าให้แรงสองแรงมากระทำต่อวัตถุขณะวัตถุกำลังเคลื่อนที่ โดยแรงทั้งสองมีขนาดเท่ากันแต่มีทิศทางตรงข้ามกัน จะพบว่า วัตถุยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นต่อไป จึงสรุปได้ว่า ” วัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่งถ้าไม่มีแรงภายนอกมากระทำต่อวัตถุ หรือถ้ามีแรงภายนอกหลายแรงมากระทำต่อวัตถุแต่แรงลัพธ์ของแรงเหล่านั้นเป็นศูนย์แล้ว วัตถุนั้นยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นตลอดไป” ดังรูป

จากที่กล่าวมาแล้วข้างต้นสามารถสรุปได้ว่า “ถ้าแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์วัตถุจะไม่เปลี่ยนสภาพการเคลื่อนที่กล่าวคือ ถ้าเดิมวัตถุอยู่นิ่งก็จะอยู่นิ่งตลอดไปแต่ถ้าเดิมวัตถุกำลังเคลื่อนที่อยู่ด้วยความเร็วค่าหนึ่งวัตถุนั้นก็จะยังคงเคลื่อนที่ต่อไปในแนวตรงตามทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป”
2. กฎการเคลื่อนที่ข้อที่สองของนิวตัน หรืออาจเรียกว่า กฎแห่งความเร่ง ถ้ามวลของวัตถุคงตัวแต่เปลี่ยนขนาดของแรง (F) ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะมากขึ้นด้วยจึงสรุปได้ว่า ขนาดของความเร่งแปรผันตรงกับขนาดของแรงลัพธ์ที่กระทำต่อวัตถุ เมื่อมวลคงตัวเขียนเป็นสัญลักษณ์ได้ว่า

และถ้าแรงลัพธ์ (F) ที่กระทำต่อวัตถุคงตัว แต่ถ้าเปลี่ยนมวล (m)ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะลดลง จึงสรุปได้ว่า ขนาดของความเร่งแปรผกผันกับมวลของวัตถุ เขียนเป็นสัญลักษณ์ได้ว่า

จากข้างต้นสรุปได้ว่า ความเร่ง (a) เป็นสัดส่วนโดยตรงกับแรง (F) ดังนั้นอัตราส่วนของแรงกับความเร่งจะเป็นค่าคงที่ซึ่งตรงกับมวล (m) ของวัตถุ เขียนเป็นความสัมพันธ์จะได้

ดังนั้น จึงสรุปเป็นกฎข้อที่สองของนิวตัน ได้ว่า “เมื่อมีแรงลัพธ์ซึ่งมีขนาดไม่เป็นศูนย์มากระทำต่อวัตถุ จะทำให้วัตถุเกิดความเร่งในทิศเดียวกับแรงลัพธ์ที่มากระทำ และขนาดของความเร่งจะแปรผันตรงกับขนาดของแรงลัพธ์และจะแปรผกผันกับมวลของวัตถุ”
ตัวอย่างที่ 1 ถ้าออกแรง 8 นิวตัน กระทำกับวัตถุมวล 32 กิโลกรัม วัตถุจะมีความเร่งเท่าใด

ตัวอย่างที่ 2 มวล 10 กิโลกรัม ต้องการให้เคลื่อนที่ด้วยความเร่ง 6 เมตรต่อวินาทีกำลังสอง จะต้องออกแรงกระทำเท่าใด

3. กฎการเคลื่อนที่ข้อที่สามของนิวตัน จากกฎการเคลื่อนที่ข้อที่หนึ่งและสองของนิวตันจะอธิบายสภาพการเคลื่อนที่ของวัตถุเมื่อมีแรงภายนอกมากระทำต่อวัตถุ ซึ่งจากการศึกษาในขณะที่มีแรงมากระทำต่อวัตถุ วัตถุจะออกแรงโต้ตอบต่อแรงที่มากระทำนั้นด้วย เช่น เมื่อเราออกแรงดึงเครื่องชั่งสปริง เราจะรู้สึกว่าเครื่องชั่งสปริงก็ดึงมือเราด้วยและยิ่งเราออกแรงดึงเครื่องชั่งสปริงด้วยแรงมากขึ้นเท่าใดเราก็จะรู้สึกว่าเครื่องชั่งสปริงยิ่งดึงมือเราไปมากขึ้นเท่านั้น ดังรูป

จากตัวอย่างจะพบว่า เมื่อมีแรงกระทำต่อวัตถุหนึ่ง วัตถุนั้นก็จะออกแรงโต้ตอบในทิศทางตรงข้ามกับแรงที่มากระทำ ซึ่งแรงทั้งสองแรงนี้จะเกิดขึ้นพร้อมกันเสมอ เราเรียกแรงที่มากระทำต่อวัตถุว่า “แรงกิริยา” (action force) และเรียกแรงที่วัตถุโต้ตอบต่อแรงที่มากระทำว่า “แรงปฏิกิริยา” (reaction force) แรงทั้งสองนี้จึงเรียกรวมกันว่า “แรงกิริยา-แรงปฏิกิริยา” (action-reaction) จึงสรุปความสัมพันธ์ระหว่างแรงกิริยากับแรงปฏิกิริยาได้เป็นกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน ได้ว่า “แรงกิริยาทุกแรงต้องมีแรงปฏิกิริยาซึ่งมีขนาดเท่ากันและทิศทางตรงข้ามกันเสมอ”หรือ action = reaction หมายความว่า เมื่อมีแรงกิริยากระทำต่อวัตถุใดก็จะมีแรงปฏิกิริยาจากวัตถุนั้นโดยมีขนาดแรงเท่ากันแต่กระทำกับวัตถุคนละก้อนเสมอ จึงนำแรงกิริยามาหักล้างกับแรงปฏิกิริยาไม่ได้ เช่น กรณีรถชนสุนัข แรงกิริยา คือ แรงที่รถชนสุนัข จึงทำให้สุนัขกระเด็นไป ในขณะเดียวกันจะมีแรงปฏิกิริยา ซึ่งเป็นแรงที่สุนัขชนรถ จึงทำให้รถบุบ จะเห็นว่าเสียหายทั้ง 2 ฝ่าย แสดงว่าแรงไม่หักล้างกัน ดังรูป

    ข้อควรจำ    ลักษณะสำคัญของแรงกิริยาแรงปฏิกิริยา
1. จะเกิดขึ้นพร้อมๆกันเสมอ
2. มีขนาดเท่ากัน
3. มีทิศทางตรงข้ามกัน
4. กระทำต่อวัตถุคนละก้อน
     1. จะเกิดขึ้นพร้อมๆกันเสมอ
     2. มีขนาดเท่ากัน
     3. มีทิศทางตรงข้ามกัน
     4. กระทำต่อวัตถุคนละก้อน

ความเร่ง

วัตถุที่เคลื่อนที่ด้วยความเร็วที่เปลี่ยนแปลงเป็นการเคลื่อนที่ด้วยความเร่ง เมื่อแรงลัพธ์มีค่าไม่เท่ากับศูนย์กระทำต่อวัตถุ วัตถุจะเคลื่อนที่ด้วยความเร่งซึ่งมีทิศทางเดียวกับแรงลัพธ์

    ความเร่ง คือ ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลา หรืออัตราการเปลี่ยนแปลงความเร็วต่อหนึ่งหน่วยเวลาแทนด้วย a มีหน่วยเป็นเมตรต่อวินาทีกำลังสองหรือ m/s2
    ความเร่งเป็นปริมาณเวกเตอร์จึงมีทั้งขนาดและทิศทาง  วัตถุต่าง ๆ จะตกสู่พื้นโลกด้วยความเร่ง 9.8 m/s2 หรือประมาณ 10 m/s2 ในทิศทางเข้าสู่ศูนย์กลางของโลก
    กรณีการเคลื่อนที่ด้วยความเร็วคงที่ ที่มีความเร่ง จะไม่มีความเร่งหรือความเร่งเป็น 0

เรื่อง โลก

การศึกษาโครงสร้างภายในของโลก โดยศึกษาการเดินทางของ “คลื่นซิสมิค” (Seismic waves) ซึ่งมี 2 ลักษณะ คือ
   คลื่นปฐมภูมิ (P wave) เป็นคลื่นตามยาวที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางนั้นเกิดการเคลื่อนไหวแบบอัดขยายในแนวเดียวกับที่คลื่นส่งผ่านไป คลื่นนี้สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของแข็ง ของเหลว และก๊าซ เป็นคลื่นที่สถานีวัดแรงสั่นสะเทือนสามารถรับได้ก่อนชนิดอื่น โดยมีความเร็วประมาณ 6 – 8 กิโลเมตร/วินาที คลื่นปฐมภูมิทำให้เกิดการอัดหรือขยายตัวของชั้นหิน ดังภาพที่ 3
  คลื่นทุติยภูมิ (S wave) เป็นคลื่นตามขวางที่เกิดจากความไหวสะเทือนในตัวกลางโดยอนุภาคของตัวกลางเคลื่อนไหวตั้งฉากกับทิศทางที่คลื่นผ่าน มีทั้งแนวตั้งและแนวนอน คลื่นชนิดนี้ผ่านได้เฉพาะตัวกลางที่เป็นของแข็งเท่านั้น ไม่สามารถเดินทางผ่านของเหลว คลื่นทุติยภูมิมีความเร็วประมาณ 3 – 4 กิโลเมตร/วินาที คลื่นทุติยภูมิทำให้ชั้นหินเกิดการคดโค้ง
ขณะที่เกิดแผ่นดินไหว (Earthquake) จะเกิดแรงสั่นสะเทือนหรือคลื่นซิสมิคขยายแผ่จากศูนย์เกิดแผ่นดินไหวออกไปโดยรอบทุกทิศทุกทาง เนื่องจากวัสดุภายในของโลกมีความหนาแน่นไม่เท่ากัน และมีสถานะต่างกัน คลื่นทั้งสองจึงมีความเร็วและทิศทางที่เปลี่ยนแปลงไปดังภาพที่ 4 คลื่นปฐมภูมิหรือ P wave สามารถเดินทางผ่านศูนย์กลางของโลกไปยังซีกโลกตรงข้ามโดยมีเขตอับ (Shadow zone) อยู่ระหว่างมุม 100 – 140 องศา แต่คลื่นทุติยภูมิ หรือ S wave ไม่สามารถเดินทางผ่านชั้นของเหลวได้ จึงปรากฏแต่บนซีกโลกเดียวกับจุดเกิดแผ่นดินไหว โดยมีเขตอับอยู่ที่มุม 120 องศาเป็นต้นไป

ภาพคลื่นปฐมภูมิ (P wave) และคลื่นทุติยภูมิ (S wave)

ภาพการเดินทางของ P wave

และ S wave ขณะเกิดแผ่นดินไหว

หิน

 หินและวัฏจักรของหิน

กระบวนการแทรกดันของหินหนืด แล้วเย็นตัวลงได้เป็นหินอัคนี เมื่อเกิดกระบวนการผุพังทำลายพาไปทับถมได้เป็นหินชั้น
และเมื่อผ่านกระบวนการของความร้อนและความดันจะกลายเป็นหินแปร

หิน (Rock) หมายถึง มวลของแข็งที่ประกอบขึ้นด้วยแร่ชนิดเดียวกันหรือหลายชนิดรวมตัวกันอยู่ตามธรรมชาติ แบ่งตามลักษณะการเกิดได้ 3 ชนิดใหญ่1. หินอัคนี (Igneous Rock)
เกิดจากหินหนืดที่อยู่ใต้เปลือกโลกแทรกดันขึ้นมาแล้วตกผลึกเป็นแร่ต่างๆ และเย็นตัวลงจับตัวแน่นเป็นหินที่ผิวโลก แบ่งเป็น 2 ชนิดคือ
  • หินอัคนีแทรกซอน (Intrusive Igneous Rock) เกิดจากการเย็นตัวลงอย่างช้า ๆ ของหินหนืดใต้เปลือกโลก มีผลึกแร่ขนาดใหญ่ (>1 มิลลิเมตร) เช่นหินแกรนิต (Granite) หินไดออไรต์ (Diorite) หินแกบโบร (Gabbro)
  • หินอัคนีพุ (Extruisive Igneous Rock) หรือหินภูเขาไฟ (Volcanic Rock) เกิดจากการเย็นตัวลงอย่างรวดเร็วของหินหนืดที่ดันตัวพุออกมานอกผิวโลกเป็นลาวา (Lava) ผลึกแร่มีขนาดเล็กหรือไม่เกิดผลึกเลยเช่น หินบะซอลต์ (Basalt) หินแอนดีไซต์ (Andesite) หินไรโอไลต์ (Rhyolite)

หินแกรนิต แสดงลักษณะทั่วไป และผลึกแร่ในเนื้อหิน

2. หินชั้นหรือหินตะกอน (Sedimentary Rock)
เกิดจากการทับถม และสะสมตัวของตะกอนต่างๆ ได้แก่ เศษหิน แร่ กรวด ทราย ดินที่ผุพังหรือสึกกร่อนถูกชะละลายมาจากหินเดิม โดยตัวการธรรมชาติ คือ ธารน้ำ ลม ธารน้ำแข็งหรือคลื่นในทะเล พัดพาไปทับถมและแข็งตัวเป็นหินในแอ่งสะสมตัวหินชนิดนี้แบ่งตามลักษณะเนื้อหินได้ 2 ชนิดใหญ่ ๆ คือ

หินทรายแสดงชั้นเฉียงระดับ

ชั้นหินทรายสลับชั้นหินดินดาน

หินกรวดมน

ชั้นหินปูน

ชั้นหินเชิร์ต

  • หินชั้นเนื้อประสม (Clastic Sedimentary Rock) เป็นหินชั้นที่เนื้อเดิมของตะกอน พวกกรวด ทราย เศษหินและดิน ยังคงสภาพอยู่ให้พิสูจน์ได้ เช่น หินทราย (Sandstone) หินดินดาน (Shale) หินกรวดมน (Conglomerate) เป็นต้น
  • หินเนื้อประสาน (Nonclastic Sedimentary Rock) เป็นหินที่เกิดจากการตกผลึกทางเคมี หรือจากสิ่งมีชีวิต มีเนื้อประสานกันแน่นไม่สามารถพิสูจน์สภาพเดิมได้ เช่น หินปูน (Limestone) หินเชิร์ต (Chert) เกลือหิน (Rock Salte) ถ่านหิน (Coal) เป็นต้น

3. หินแปร (Metamorphic Rock)
เกิดจากการแปรสภาพโดยการกระทำของความร้อน ความดันและปฏิกิริยาทางเคมี ทำให้เนื้อหิน แร่ประกอบหินและโครงสร้างเปลี่ยนไปจากเดิม การแปรสภาพของหินจะอยู่ในสถานะของของแข็ง ซึ่งจัดแบ่งออกเป็น 2 แบบ คือ

  • การแปรสภาพบริเวณไพศาล (Regional metamorphism) เกิดเป็นบริเวณกว้างโดยมีความร้อนและความดันทำให้เกิดแร่ใหม่หรือผลึกใหม่เกิดขึ้น มีการจัดเรียงตัวของแร่ใหม่ และแสดงริ้วขนาน (Foliation) อันเนื่องมาจากแร่เดิมถูกบีบอัดจนเรียงตัวเป็นแนวหรือแถบขนานกัน เช่น หินไนส์ (Gneiss) หินชีสต์ (Schist) และหินชนวน (Slate) เป็นต้น
  • การแปรสภาพสัมผัส (Contact metamorphism) เกิดจากการแปรสภาพโดยความร้อนและปฏิกิริยาทางเคมีของสารละลายที่ขึ้นมากับหินหนืดมาสัมผัสกับหินท้องที่ ไม่มีอิทธิพลของความดันมากนัก ปฏิกิริยาทางเคมีอาจทำให้ได้แร่ใหม่บางส่วนหรือเกิดแร่ใหม่แทนที่แร่ในหินเดิม หินแปรที่เกิดขึ้นจะมีการจัดเรียงตัวของแร่ใหม่ ไม่แสดงริ้วขนาน (Nonfoliation) เช่น หินอ่อน (Marble) หินควอตไซต์ (Quartzite)

หินชนวน (Slate)

หินไนส์ (Gneiss)

หินควอตไซต์ (Quartzite)

หินอ่อน (Marble)

วัฏจักรของหิน

วัฏจักรของหิน (Rock cycle) หมายถึง การเปลี่ยนแปลงของหินทั้ง 3 ชนิด จากหินชนิดหนึ่งไปเป็นอีกชนิดหนึ่งหรืออาจเปลี่ยนกลับไปเป็นหินชนิดเดิมอีกก็ได้ กล่าวคือ เมื่อ หินหนืด เย็นตัวลงจะตกผลึกได้เป็น หินอัคนี เมื่อหินอัคนีผ่านกระบวนการผุพังอยู่กับที่และการกร่อนจนกลายเป็นตะกอนมีกระแสน้ำ ลม ธารน้ำแข็ง หรือคลื่นในทะเล พัดพาไปสะสมตัวและเกิดการแข็งตัวกลายเป็นหิน อันเนื่องมาจากแรงบีบอัดหรือมีสารละลายเข้าไปประสานตะกอนเกิดเป็น หินชั้นขึ้น เมื่อหินชั้นได้รับความร้อนและแรงกดอัดสูงจะเกิดการแปรสภาพกลายเป็นหินแปร และหินแปรเมื่อได้รับความร้อนสูงมากจนหลอมละลาย ก็จะกลายสภาพเป็นหินหนืด ซึ่งเมื่อเย็นตัวลงก็จะตกผลึกเป็นหินอัคนีอีกครั้งหนึ่งวนเวียนเช่นนี้เรื่อยไปเป็นวัฏจักรของหิน กระบวนการเหล่านี้อาจข้ามขั้นตอนดังกล่าวได้ เช่น จากหินอัคนีไปเป็นหินแปร หรือจากหินแปรไปเป็นหินชั้น
 แหล่งที่มา http://www.dmr.go.th/ewtadmin/ewt/dmr_web/main.php?filename=rocks

ดิน

seedlingดิน หมายถึง วัตถุที่เกิดขึ้นตามธรรมชาติจากการสลายตัวทางกายภาพ และทางเคมีของหินและแร่ รวมกับสารอินทรีย์ ที่เกิดจากการสลายตัวของซากพืชซากสัตว์เป็นผิวชั้นบนที่หุ้มห่อโลก ซึ่งดินจะมีลักษณะและคุณสมบัติต่างกันไปในที่ต่างๆ ตามสภาพภูมิอากาศ ภูมิประเทศ วัตถุต้นกำเนิด สิ่งมีชีวิตและระยะเวลาการสร้างตัวของดิน

ประเภทของดิน[แก้]

ดินเหนียว เป็นดินที่มีเนื้อละเอียด ในสภาพดินแห้งจะแตกออกเป็นก้อนแข็งมาก เมื่อเปียกน้ำแล้วจะมีความยืดหยุ่น สามารถปั้นเป็นก้อนหรือคลึงเป็นเส้นยาวได้ เหนียวเหนอะหนะติดมือ เป็นดินที่มีการระบายน้ำและอากาศไม่ดี แต่สามารถอุ้มน้ำ ดูดยึด และแลกเปลี่ยนธาตุอาหารพืชได้ดี เหมาะที่จะใช้ทำนาปลูกข้าวเพราะเก็บน้ำได้นาน

ดินร่วน เป็นดินที่เนื้อดินค่อนข้างละเอียดนุ่มมือในสภาพดินแห้งจะจับกันเป็นก้อนแข็งพอประมาณ ในสภาพดินชื้นจะยืดหยุ่นได้บ้าง เมื่อสัมผัสหรือคลึงดินจะรู้สึกนุ่มมือแต่อาจจะรู้สึกสากมืออยู่บ้างเล็กน้อย เมื่อกำดินให้แน่นในฝ่ามือแล้วคลายมือออก ดินจะจับกันเป็นก้อนไม่แตกออกจากกัน เป็นดินที่มีการระบายน้ำได้ดีปานกลาง จัดเป็นเนื้อดินที่มีความเหมาะสมสำหรับการเพาะปลูก

ดินทราย เป็นดินที่มีอนุภาคขนาดทรายเป็นองค์ประกอบอยู่มากกว่าร้อยละ 85 เนื้อดินมีการเกาะตัวกันหลวมๆ มองเห็นเป็นเม็ดเดี่ยวๆ ได้ ถ้าสัมผัสดินที่อยู่ในสภาพแห้งจะรู้สึกสากมือ เมื่อลองกำดินที่แห้งนี้ไว้ในอุ้งมือแล้วคลายมือออกดินก็จะแตกออกจากกันได้ แต่ถ้ากำดินที่อยู่ในสภาพชื้นจะสามารถทำให้เป็นก้อนหลวมๆ ได้ แต่พอสัมผัสจะแตกออกจากกันทันที

ดินทางด้านวิศวกรรม[แก้]

ดิน เป็นวัสดุก่อสร้างพื้นฐานในงานวิศวกรรมโยธา ใช้เป็นวัสดุถมในงานก่อสร้างต่าง ๆ เช่นงานถมเพื่อยกระดับบริเวณอาคาร ถนน เขื่อนและใช้เป็นวัสดุผสมสำหรับทำอิฐหรือ ในบางกรณีอาจเพิ่มวัสดุอื่น เช่นปูนขาว เพื่อช่วยในการปรับปรุงคุณภาพดินให้มีคุณสมบัติในการรับกำลังได้มากขึ้นเพื่อผลทางด้านวิศวกรรม บางวัฒนธรรมนำดินมาปั้นเป็นตัวบ้านที่อยู่อาศัยโดยตรง

ประโยชน์ของดิน[แก้]

  • ดิน เป็นวัสดุทำเครื่องปั้นดินเผา ดินที่นำมาใช้ทำเครื่องปั้นดินเผาเป็นดินเหนียวที่มีเนื้อละเอียด
  • สามารถทำเป็นที่อยู่อาศัยของสิ่งมีชีวิตได้
  • ดินมีไว้สำหรับปลูกพืช

วิชาที่เกี่ยวกับดิน[แก้]

โลกของเรา โครงสร้างโลก

38763_full

เมื่อประมาณ 4,600 ล้านปีมาแล้ว กลุ่มก๊าซในเอกภพบริเวณนี้ ได้รวมตัวกันเป็นหมอกเพลิงมีชื่อว่า “โซลาร์เนบิวลา” (Solar แปลว่า สุริยะ, Nebula แปลว่า หมอกเพลิง) แรงโน้มถ่วงทำให้กลุ่มก๊าซยุบตัวและหมุนตัวเป็นรูปจาน ใจกลางมีความร้อนสูงเกิดปฏิกิริยานิวเคลียร์แบบฟิวชั่น กลายเป็นดาวฤกษ์ที่ชื่อว่าดวงอาทิตย์ ส่วนวัสดุที่อยู่รอบๆ มีอุณหภูมิต่ำกว่า รวมตัวเป็นกลุ่มๆ มีมวลสารและความหนาแน่นมากขึ้นเป็นชั้นๆ และกลายเป็นดาวเคราะห์ในที่สุด (ภาพที่ 1)


ภาพที่ 1 กำเนิดระบบสุริยะ

          โลกในยุคแรกเป็นของเหลวหนืดร้อน ถูกกระหน่ำชนด้วยอุกกาบาตตลอดเวลา องค์ประกอบซึ่งเป็นธาตุหนัก เช่น เหล็ก และนิเกิล จมตัวลงสู่แก่นกลางของโลก ขณะที่องค์ประกอบซึ่งเป็นธาตุเบา เช่น ซิลิกอน ลอยตัวขึ้นสู่เปลือกนอก ก๊าซต่างๆ เช่น ไฮโดรเจนและคาร์บอนไดออกไซด์ พยายามแทรกตัวออกจากพื้นผิว ก๊าซไฮโดรเจนถูกลมสุริยะจากดวงอาทิตย์ทำลายให้แตกเป็นประจุ ส่วนหนึ่งหลุดหนีออกสู่อวกาศ อีกส่วนหนึ่งรวมตัวกับออกซิเจนกลายเป็นไอน้ำ เมื่อโลกเย็นลง เปลือกนอกตกผลึกเป็นของแข็ง ไอน้ำในอากาศควบแน่นเกิดฝน น้ำฝนได้ละลายคาร์บอนไดออกไซด์ลงมาสะสมบนพื้นผิว เกิดทะเลและมหาสมุทร สองพันล้านปีต่อมาการวิวัฒนาการของสิ่งมีชีวิต ได้นำคาร์บอนไดออกไซด์มาผ่านการสังเคราะห์แสง เพื่อสร้างพลังงาน และให้ผลผลิตเป็นก๊าซออกซิเจน ก๊าซออกซิเจนที่ลอยขึ้นสู่ชั้นบรรยากาศชั้นบน แตกตัวและรวมตัวเป็นก๊าซโอโซน ซึ่งช่วยป้องกันอันตรายจากรังสีอุลตราไวโอเล็ต ทำให้สิ่งมีชีวิตมากขึ้น และปริมาณของออกซิเจนมากขึ้นอีก ออกซิเจนจึงมีบทบาทสำคัญต่อการเปลี่ยนแปลงบนพื้นผิวโลกในเวลาต่อมา (ภาพที่ 2)


ภาพที่ 2 กำเนิดโลก

โครงสร้างภายในของโลก
โลกมีขนาดเส้นผ่านศูนย์กลางยาว 12,756 กิโลเมตร (รัศมี 6,378 กิโลเมตร) มีมวลสาร 6 x 10^24 กิโลกรัม และมีความหนาแน่นเฉลี่ย 5,520 กิโลกรัมต่อลูกบาศก์เมตร (หนาแน่นกว่าน้ำ 5,520 เท่า) นักธรณีวิทยาทำการศึกษาโครงสร้างภายในของโลก โดยศึกษาการเดินทางของ “คลื่นซิสมิค” (Seismic waves) ซึ่งมี 2 ลักษณะ คือ


ภาพที่ 3 คลื่นปฐมภูมิ (P wave) และคลื่นทุติยภูมิ (S wave)
คลิก เพื่อดูภาพเคลื่อนไหว

            คลื่นปฐมภูมิ (P wave) เป็นคลื่นตามยาวที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางนั้นเกิดการเคลื่อนไหวแบบอัดขยายในแนวเดียวกับที่คลื่นส่งผ่านไป คลื่นนี้สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของแข็ง ของเหลว และก๊าซ เป็นคลื่นที่สถานีวัดแรงสั่นสะเทือนสามารถรับได้ก่อนชนิดอื่น โดยมีความเร็วประมาณ 6 – 8 กิโลเมตร/วินาที คลื่นปฐมภูมิทำให้เกิดการอัดหรือขยายตัวของชั้นหิน ดังภาพที่ 3

 คลื่นทุติยภูมิ (S wave) เป็นคลื่นตามขวางที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางเคลื่อนไหวตั้งฉากกับทิศทางที่คลื่นผ่าน มีทั้งแนวตั้งและแนวนอน คลื่นชนิดนี้ผ่านได้เฉพาะตัวกลางที่เป็นของแข็งเท่านั้น ไม่สามารถเดินทางผ่านของเหลว คลื่นทุติยภูมิมีความเร็วประมาณ 3 – 4 กิโลเมตร/วินาที คลื่นทุติยภูมิทำให้ชั้นหินเกิดการคดโค้ง


ภาพที่ 4 การเดินทางของ P wave และ S wave ขณะเกิดแผ่นดินไหว
คลิก เพื่อดูภาพเคลื่อนไหว

          ขณะที่เกิดแผ่นดินไหว (Earthquake) จะเกิดแรงสั่นสะเทือนหรือคลื่นซิสมิคขยายแผ่จากศูนย์เกิดแผ่นดินไหวออกไปโดยรอบทุกทิศทุกทาง เนื่องจากวัสดุภายในของโลกมีความหนาแน่นไม่เท่ากัน และมีสถานะต่างกัน คลื่นทั้งสองจึงมีความเร็วและทิศทางที่เปลี่ยนแปลงไปดังภาพที่ 4 คลื่นปฐมภูมิหรือ P wave สามารถเดินทางผ่านศูนย์กลางของโลกไปยังซีกโลกตรงข้ามโดยมีเขตอับ (Shadow zone) อยู่ระหว่างมุม 100 – 140 องศา แต่คลื่นทุติยภูมิ หรือ S wave ไม่สามารถเดินทางผ่านชั้นของเหลวได้ จึงปรากฏแต่บนซีกโลกเดียวกับจุดเกิดแผ่นดินไหว โดยมีเขตอับอยู่ที่มุม 120 องศาเป็นต้นไป

โครงสร้างภายในของโลกแบ่งตามองค์ประกอบทางเคมี

นักธรณีวิทยา แบ่งโครงสร้างภายในของโลกออกเป็น 3 ส่วน โดยพิจารณาจากองค์ประกอบทางเคมี ดังนี้ (ภาพที่ 5)
 เปลือกโลก (Crust) เป็นผิวโลกชั้นนอก มีองค์ประกอบส่วนใหญ่เป็นซิลิกอนไดออกไซด์ และอะลูมิเนียมออกไซด์

 แมนเทิล (Mantle) คือส่วนซึ่งอยู่อยู่ใต้เปลือกโลกลงไปจนถึงระดับความลึก 2,900 กิโลเมตร มีองค์ประกอบหลักเป็นซิลิคอนออกไซด์ แมกนีเซียมออกไซด์ และเหล็กออกไซด์

 แก่นโลก (Core) คือส่วนที่อยู่ใจกลางของโลก มีองค์ประกอบหลักเป็นเหล็ก และนิเกิล


ภาพที่ 5 องค์ประกอบทางเคมีของโครงสร้างภายในของโลก


ภาพที่ 6 โครงสร้างภายในของโลก
คลิก เพื่อดูภาพเคลื่อนไหว

โครงสร้างภายในของโลกแบ่งตามคุณสมบัติทางกายภาพ
นักธรณีวิทยา แบ่งโครงสร้างภายในของโลกออกเป็น 5 ส่วน โดยพิจารณาจากคุณสมบัติทางกายภาพ ดังนี้ (ภาพที่ 6)
 ลิโทสเฟียร์ (Lithosphere) คือ ส่วนชั้นนอกสุดของโลก ประกอบด้วย เปลือกโลกและแมนเทิลชั้นบนสุด ดังนี้
o เปลือกทวีป (Continental crust) ส่วนใหญ่เป็นหินแกรนิตมีความหนาเฉลี่ย 35 กิโลเมตร ความหนาแน่น 2.7 กรัม/ลูกบาศก์เซนติเมตร
o เปลือกสมุทร (Oceanic crust) เป็นหินบะซอลต์ความหนาเฉลี่ย 5 กิโลเมตร ความหนาแน่น 3 กรัม/ลูกบาศก์เซนติเมตร (มากกว่าเปลือกทวีป)
o แมนเทิลชั้นบนสุด (Uppermost mantle) เป็นวัตถุแข็งซึ่งรองรับเปลือกทวีปและเปลือกสมุทรอยู่ลึกลงมาถึงระดับลึก 100 กิโลเมตร
 แอสทีโนสเฟียร์ (Asthenosphere) เป็นแมนเทิลชั้นบนซึ่งอยู่ใต้ลิโทสเฟียร์ลงมาจนถึงระดับ 700 กิโลเมตร เป็นวัสดุเนื้ออ่อนอุณหภูมิประมาณ 600 – 1,000ฐC เคลื่อนที่ด้วยกลไกการพาความร้อน (Convection) มีความหนาแน่นประมาณ 3.3 กรัม/เซนติเมตร
 เมโซสเฟียร์ (Mesosphere) เป็นแมนเทิลชั้นล่างซึ่งอยู่ลึกลงไปจนถึงระดับ 2,900 กิโลเมตร มีสถานะเป็นของแข็งอุณหภูมิประมาณ 1,000 – 3,500ฐC มีความหนาแน่นประมาณ 5.5 กรัม/เซนติเมตร
 แก่นชั้นนอก (Outer core) อยู่ลึกลงไปถึงระดับ 5,150 กิโลเมตร เป็นเหล็กหลอมละลายมีอุณหภูมิสูง 1,000 – 3,500ฐC เคลื่อนตัวด้วยกลไกการพาความร้อนทำให้เกิดสนามแม่เหล็กโลก มีความหนาแน่น 10 กรัม/ลูกบาศก์เซนติเมตร
 แก่นชั้นใน (Inner core) เป็นเหล็กและนิเกิลในสถานะของแข็งซึ่งมีอุณหภูมิสูงถึง 5,000 ?C ความหนาแน่น 12 กรัมต่อลูกบาศก์เซนติเมตร จุดศูนย์กลางของโลกอยู่ที่ระดับลึก 6,370 กิโลเมตร

สนามแม่เหล็กโลก
แก่นโลกมีองค์ประกอบหลักเป็นเหล็ก แก่นโลกชั้นใน (Inner core) มีความกดดันสูงจึงมีสถานะเป็นของแข็ง ส่วนแก่นชั้นนอก (Outer core) มีความกดดันน้อยกว่าจึงมีสถานะเป็นของเหลวหนืด แก่นชั้นในมีอุณหภูมิสูงกว่าแก่นชั้นนอก พลังงานความร้อนจากแก่นชั้นใน จึงถ่ายเทขึ้นสู่แก่นชั้นนอกด้วยการพาความร้อน (Convection) เหล็กหลอมละลายเคลื่อนที่หมุนวนอย่างช้าๆ ทำให้เกิดการเคลื่อนที่ของกระแสไฟฟ้า และเหนี่ยวนำให้เกิดสนามแม่เหล็กโลก (The Earth’s magnetic field)


ภาพที่ 7 แกนแม่เหล็กโลก
คลิก เพื่อดูภาพเคลื่อนไหว

          อย่างไรก็ตามแกนแม่เหล็กโลกและแกนหมุนของโลกมิใช่แกนเดียวกัน แกนแม่เหล็กโลกมีขั้วเหนืออยู่ทางด้านใต้ และมีแกนใต้อยู่ทางด้านเหนือ แกนแม่เหล็กโลกเอียงทำมุมกับแกนเหนือ-ใต้ทางภูมิศาสตร์ (แกนหมุนของโลก) 12 องศา ดังภาพที่ 7


ภาพที่ 8 สนามแม่เหล็กโลก

          สนามแม่เหล็กโลกก็มิใช่เป็นรูปทรงกลม (ภาพที่ 8) อิทธิพลของลมสุริยะทำให้ด้านที่อยู่ใกล้ดวงอาทิตย์มีความกว้างน้อยกว่าด้านตรงข้ามดวงอาทิตย์ สนามแม่เหล็กโลกไม่ใช่สิ่งคงที่ แต่มีการเปลี่ยนแปลงความเข้มและสลับขั้วเหนือ-ใต้ ทุกๆ หนึ่งหมื่นปี ในปัจจุบันสนามแม่เหล็กโลกอยู่ในช่วงที่มีกำลังอ่อน สนามแม่เหล็กโลกเป็นสิ่งที่จำเป็นที่เอื้ออำนวยในการดำรงชีวิต หากปราศจากสนามแม่เหล็กโลกแล้ว อนุภาคพลังงานสูงจากดวงอาทิตย์และอวกาศ จะพุ่งชนพื้นผิวโลก ทำให้สิ่งมีชีวิตไม่สามารถดำรงอยู่ได้ (ดูรายละเอียดเพิ่มเติมในบทที่ 3 พลังงานจากดวงอาทิตย์)

เกร็ดความรู้: ทิศเหนือที่อ่านได้จากเข็มทิศแม่เหล็ก อาจจะไม่ตรงกับทิศเหนือจริง ด้วยเหตุผล 2 ประการคือ
 ขั้วแม่เหล็กโลก และขั้วโลก มิใช่จุดเดียวกัน
 ในบางพื้นที่ของโลก เส้นแรงแม่เหล็กมีความเบี่ยงเบน (Magnetic deviation) มิได้ขนานกับเส้นลองจิจูด (เส้นแวง) ทางภูมิศาสตร์ แต่โชคดีที่บริเวณประเทศไทยมีค่าความเบี่ยงเบน = 0 ดังนั้นจึงถือว่า ทิศเหนือแม่เหล็กเป็นทิศเหนือจริงได้

http://portal.edu.chula.ac.th/lesa_cd/assets/document/lesa212/8/earth_structure/earth_structure/earth_structure.html

เรื่อง นํ้า

165แม้ว่าพื้นผิว 2 ใน 3 ส่วนของโลกปกคลุมไปด้วยน้ำ  แต่น้ำจืดที่สามารถนำมาใช้ในการดำรงชีวิตของมนุษย์กลับมีไม่ถึง 1%  ถ้าหากสมมติว่าน้ำในโลกทั้งหมดเท่ากับ 100 ลิตร จะมีน้ำทะเล 97 ลิตร  น้ำแข็งเกือบ 3 ลิตร  ส่วนน้ำจืดที่เราสามารถใช้บริโภคอุปโภคได้มีเพียง 3 มิลลิลิตร ดังภาพที่ 2  ด้วยเหตุนี้น้ำจึงเป็นทรัพยากรที่ล้ำค่า และขาดแคลนง่าย

ภาพที่ 2 เปรียบเทียบแหล่งน้ำบนโลก

        แม้ว่าปริมาณน้ำส่วนใหญ่จะอยู่ในทะเลและมหาสมุทร แต่น้ำก็มีอยู่ในทุกหนแห่งของโลก ไม่ว่าจะเป็นแม่น้ำ ลำคลอง น้ำใต้ดิน น้ำในบรรยากาศ รวมทั้งเมฆหมอกและหยาดน้ำฟ้า ดังข้อมูลในตารางที่ 1  นอกจากนั้นร่างกายมนุษย์มีองค์ประกอบเป็นน้ำร้อยละ 65  ร่างกายของสัตว์น้ำบางชนิด เช่น แมงกะพรุน มีองค์ประกอบเป็นน้ำร้อยละ 98  ดังนั้นจึงกล่าวได้ว่า น้ำคือปัจจัยที่สำคัญที่สุดของสิ่งมีชีวิต
ตารางที่ 1 แหล่งน้ำบนโลก
มหาสมุทร 97.2 % ทะเลสาบน้ำเค็ม 0.008 %
ธารน้ำแข็ง 2.15 % ความชื้นของดิน 0.005 %
น้ำใต้ดิน 0.62 % แม่น้ำ ลำธาร 0.00001 %
ทะเลสาบน้ำจืด 0.009 % บรรยากาศ 0.001 %

น้ำผิวดิน

แหล่งน้ำที่เรารู้จักและใช้ประโยชน์กันมากที่สุดคือ “น้ำผิวดิน” (Surface water)  น้ำผิวดินมีทั้งน้ำเค็มและน้ำจืด  แหล่งน้ำผิวดินที่เป็นน้ำจืดได้แก่ ทะเลสาบน้ำจืด แม่น้ำ ลำธาร ห้วย หนอง คลอง บึง  เนื่องจากภูมิประเทศของพื้นผิวโลกไม่ราบเรียบเสมอกัน พื้นผิวของโลกแต่ละแห่งมีความแข็งแรงทนทานไม่เหมือนกัน  แรงโน้มถ่วงทำให้น้ำไหลจากที่สูงลงที่ต่ำ น้ำมีสมบัติเป็นตัวทำละลายที่ดีจึงสามารถกัดเซาะพื้นผิวโลกให้เกิดการเปลี่ยนแปลงภูมิประเทศ

การกัดเซาะของน้ำอย่างต่อเนื่อง ทำให้ร่องน้ำเปลี่ยนแปลงขนาด รูปร่าง และทิศทางการไหล เมื่อฝนตก หยดน้ำจะรวมตัวกันแล้วไหลทำให้เกิดร่องน้ำ ร่องน้ำเล็กๆ ไหลมารวมกันเป็น “ธารน้ำ” (Stream)  เมื่อกระแสน้ำในธารน้ำไหลอย่างต่อเนื่องก็จะกัดเซาะพื้นผิวและพัดพาตะกอนขนาดต่างๆ ไปกับกระแสน้ำ ธารน้ำจึงมีขนาดใหญ่และยาวขึ้นจนกลายเป็น แม่น้ำ (River) ความเร็วของกระแสน้ำขึ้นอยู่กับความลาดชันของพื้นที่ ถ้าพื้นที่มีความลาดชันมากกระแสน้ำจะเคลื่อนที่เร็ว แต่ถ้าหากพื้นที่มีความลาดชันน้อยกระแสน้ำก็จะเคลื่อนที่ช้า  นอกจากนั้นความเร็วของกระแสน้ำยังขึ้นอยู่กับพื้นที่หน้าตัด เข่น เมื่อกระแสน้ำไหลผ่านช่องเขาแคบๆ ก็จะเคลื่อนที่เร็ว  เมื่อกระแสน้ำพบความที่ราบกว้างใหญ่ เช่น บึง หรือทะเลสาบ กระแสน้ำจะหยุดนิ่งทำให้ตะกอนที่น้ำพัดพามาก็จะตกทับถมใต้ท้องน้ำ ดังเราจะพบว่า อ่างเก็บน้ำเหนือเขื่อนที่มีอายุมากมักมีความตื้นเขินและเก็บกักน้ำได้น้อยลง  อย่างไรก็ตามปริมาณของน้ำผิวดินขึ้นอยู่กับลักษณะภูมิอากาศ ภูมิประเทศ ปริมาณน้ำฝน เนื้อดิน การใช้ประโยชน์ที่ดินและทรัพยากรน้ำ

ภาพที่ 3 ภาคตัดขวางของแม่น้ำ

น้ำใต้ดิน

หากไม่นับธารน้ำแข็งขั้วโลกแล้ว “น้ำบาดาล” (Ground water) เป็นแหล่งน้ำจืดที่มีปริมาณมากที่สุดบนโลกของเรา  น้ำบาดาลเกิดขึ้นจากการไหลซึมของน้ำผิวดิน  ในเนื้อดินมีรูพรุน (Pore) สำหรับอากาศและน้ำ เช่น ดินเหนียวมีรูพรุนขนาดเล็ก น้ำไหลผ่านได้ยาก  ดินทรายมีรูพรุนขนาดใหญ่ น้ำไหลผ่านได้ง่าย  เมื่อพื้นผิวดินเกิดความชื้นหรือมีฝนตก เม็ดดินจะเก็บน้ำไว้ในรูพรุนไว้จนกระทั่งดินอิ่มตัวด้วยน้ำ ไม่สามารถเก็บน้ำได้มากกว่านี้แล้ว น้ำส่วนหนึ่งจะไหลบ่าไปตามพื้นผิว (Run off) น้ำอีกส่วนหนึ่งจะไหลซึมลงสู่ชั้นดินเบื้องล่าง (Infiltration)  ใต้ชั้นดินลึกลงไปจะเป็นชั้นหินตะกอนเนื้อหยาบที่สามารถเก็บกักน้ำบาดาลไว้ได้เรียกว่า “ชั้นหินอุ้มน้ำ” (Aquifer)  ซึ่งเป็นหินทราย กรวด ตะกอนทราย จึงมีสมบัติยอมให้น้ำซึมผ่านโดยง่าย เนื่องจากช่องว่างขนาดใหญ่ระหว่างอนุภาคตะกอน จึงเก็บกักน้ำได้เป็นปริมาณมากจนกลายเป็นแหล่งน้ำบาดาล  ใต้ชั้นหินอุ้มน้ำลงไปเป็นชั้นหินตะกอนเนื้อละเอียด เช่น หินดินดานหรือทรายแป้งซึ่งไม่ยอมให้น้ำซึมผ่านได้  ในบางแห่งที่ชั้นหินอุ้มน้ำถูกขนาบด้วยชั้นหินเนื้อละเอียดก็จะเกิดแรงดันน้ำ ถ้าเราเจาะบ่อบาดาลลงไปตรงบริเวณดังกล่าง แรงดันภายในจะดันน้ำให้มีระดับสูงขึ้น หรือไหลล้นปากบ่อออกมา  และเนื่องจากชั้นหินมีความลาดเอียง น้ำในดินจึงไหลจากที่สูงไปสู่ที่ต่ำ แรงดันของน้ำใต้ดินจึงมักทำให้เกิด “น้ำพุ” (Spring) ในบริเวณที่ราบต่ำ ดังภาพที่ 4

ภาพที่ 4 ภาคตัดขวางของแหล่งน้ำใต้ดิน 

อย่างไรก็ตามน้ำบาดาลทำให้เกิดแรงดันภายใต้พื้นผิว ซึ่งช่วยรับน้ำหนักที่กดทับจากด้านบน แต่ถ้าหากเราสูบน้ำบาดาลขึ้นมาใช้เป็นปริมาณมาก เกินกว่าที่น้ำจากธรรมชาติจะไหลมาแทนที่ช่องว่างระหว่างอนุภาคตะกอนของชั้นหินอุ้มน้ำได้ทัน ก็จะส่งผลให้ระดับน้ำใต้ดินลดลงอย่างรวดเร็ว โพรงที่ว่างที่เกิดขึ้นจะทำให้แผ่นดินที่อยู่ด้านบนทรุดตัวลงมากลายเป็น หลุมยุบ (Sinkhole) ซึ่งถ้าเกิดขึ้นในเขตชุมชน ก็จะสร้างความเสียหายแก่สิ่งปลูกสร้าง และเกิดอันตรายต่อชีวิต

โลกของเรา

38763_full

โลกของเรา

โครงสร้างและส่วนประกอบของโลก

โครงสร้าง

เปลือกโลก (crust) เป็นชั้นนอกสุดของโลกที่มีความหนาประมาณ 60-70 กิโลเมตร ซึ่งถือว่าเป็นชั้นที่บางที่สุดเมื่อเปรียบกับชั้นอื่นๆ เสมือนเปลือกไข่ไก่หรือเปลือกหัวหอม เปลือกโลกประกอบไปด้วยแผ่นดินและแผ่นน้ำ ซึ่งเปลือกโลกส่วนที่บางที่สุดคือส่วนที่อยู่ใต้มหาสมุทร ส่วนเปลือกโลกที่หนาที่สุดคือเปลือกโลกส่วนที่รองรับทวีปที่มีเทือกเขาที่ สูงที่สุดอยู่ด้วย นอกจากนี้เปลือกโลกยังสามารถแบ่งออกเป็น 2 ชั้นคือ

ชั้นที่หนึ่ง: ชั้นหินไซอัล (sial) เป็น เปลือกโลกชั้นบนสุด ประกอบด้วยแร่ซิลิกาและอะลูมินาซึ่งเป็นหินแกรนิตชนิดหนึ่ง สำหรับบริเวณผิวของชั้นนี้จะเป็นหินตะกอน ชั้นหินไซอัลนี้มีเฉพาะเปลือกโลกส่วนที่เป็นทวีปเท่านั้น ส่วนเปลือกโลกที่อยู่ใต้ทะเลและมหาสมุทรจะไม่มีหินชั้นนี้

 ชั้นที่สอง: ชั้นหินไซมา (sima) เป็นชั้นที่อยู่ใต้หินชั้นไซอัลลงไป ส่วนใหญ่เป็นหินบะซอลต์ประกอบด้วยแร่ซิลิกา เหล็กออกไซด์และแมกนีเซียม ชั้นหินไซมานี้ห่อหุ้มทั่วทั้งพื้นโลกอยู่ในทะเลและมหาสมุทร ซึ่งต่างจากหินชั้นไซอัลที่ปกคลุมเฉพาะส่วนที่เป็นทวีป และยังมีความหนาแน่นมากกว่าชั้นหินไซอัล

แมนเทิล      

                      แมน เทิล (mantle หรือ Earth’s mantle) คือชั้นที่อยู่ถัดจากเปลือกโลกลงไป มีความหนาประมาณ 3,000 กิโลเมตร บางส่วนของหินอยู่ในสถานะหลอมเหลวเรียกว่าหินหนืด (Magma) ทำให้ชั้นแมนเทิลนี้มีความร้อนสูงมาก เนื่องจากหินหนืดมีอุณหภูมิประมาณ 800 – 4300°C ซึ่งประกอบด้วยหินอัคนีเป็นส่วนใหญ่ เช่นหินอัลตราเบสิก หินเพริโดไลต์

 

แก่นโลก

                 ความหนาแน่นของดาวโลกโดยเฉลี่ยคือ 5,515 กก./ลบ.ม. ทำให้มันเป็นดาวเคราะห์ที่หนาแน่นที่สุดในระบบสุริยะ แต่ถ้าวัดเฉพาะความหนาแน่นเฉลี่ยของพื้นผิวโลกแล้ววัดได้เพียงแค่ 3,000 กก./ลบ.ม. เท่านั้น ซึ่งทำให้เกิดข้อสรุปว่า ต้องมีวัตถุอื่นๆ ที่หนาแน่นกว่าอยู่ในแก่นโลกแน่นอน ระหว่างการเกิดขึ้นของโลก ประมาณ 4.5 พันล้านปีมาแล้ว การหลอมละลายอาจทำให้เกิดสสารที่มีความหนาแน่นมากกว่าไหลเข้าไปในแกนกลางของ โลก ในขณะที่สสารที่มีความหนาแน่นน้อยกว่าคลุมเปลือกโลกอยู่ ซึ่งทำให้แก่นโลก (core) มีองค์ประกอบเป็นธาตุเหล็กถึง 80%, รวมถึงนิกเกิลและธาตุที่มีน้ำหนักที่เบากว่าอื่นๆ แต่ในขณะที่สสารที่มีความหนาแน่นสูงอื่นๆ เช่นตะกั่วและยูเรเนียม มีอยู่น้อยเกินกว่าที่จะผสานรวมเข้ากับธาตุที่เบากว่าได้ และทำให้สสารเหล่านั้นคงที่อยู่บนเปลือกโลก แก่นโลกแบ่งได้ออกเป็น 2 ชั้นได้แก่

  • แก่นโลกชั้นนอก (outer core) มีความหนาจากผิวโลกประมาณ 2,900 – 5,000 กิโลเมตร ประกอบด้วยธาตุเหล็กและนิกเกิลในสภาพที่หลอมละลาย และมีความร้อนสูง มีอุณหภูมิประมาณ 6200 – 6400 มีความหนาแน่นสัมพัทธ์ 12.0 และส่วนนี้มีสถานะเป็นของเหลว

  • แก่นโลกชั้นใน (inner core) เป็น ส่วนที่อยู่ใจกลางโลกพอดี มีรัศมีประมาณ 1,000 กิโลเมตร มีอุณหภูมิประมาณ 4,300 – 6,200 และมีความกดดันมหาศาล ทำให้ส่วนนี้จึงมีสถานะเป็นของแข็ง ประกอบด้วยธาตุเหล็กและนิกเกิลที่อยู่ในสภาพที่เป็นของแข็ง มีความหนาแน่นสัมพัทธ์ 17.0


สภาพบรรยากาศ

           สภาพอากาศของโลก คือ การถูกห่อหุ้มด้วยชั้นบรรยากาศ ซึ่งมีทั้งหมด 5 ชั้น ได้แก่

  1.  เมฆ หมอกซึ่งมีความหนาแน่นมาก และมีการแปรปรวนของอากาศอยู่ตลอโทรโพสเฟียร์ เริ่มตั้งแต่ 0-10 กิโลเมตรจากผิวโลก บรรยกาศมีไอน้ำดเวลา

  2. สต ราโตสเฟียร์ เริ่มตั้งแต่ 10-35 กิโลเมตรจากผิวโลก บรรยากาศชั้นนี้แถบจะไม่เปลื่ยนแปลงจากโทรโพสเฟียร์ยกเว้นมีผงฟุ่นเพิ่มมา เล็กน้อย

  3. เมโสสเฟียร์ เริ่มตั้งแต่35-80 กิโลเมตร จากผิวโลก บรรยากาศมีก๊าซโอโซนอยู่มากซึ่งจะช่วยสกัดแสงอัลตร้า ไวโอเรต (UV) จาก ดวงอาทิตย์ไม่ให้มาถึงพื้นโลกมากเกินไป

  4. ไอโอโนสเฟียร์ เริ่มตั้งแต่ 80-600 กิโลเมตร จากผิวโลก บรรยากาศมีออกซิเจน จางมากไม่เหมาะกับมนุษย์

  5. เอก โซสเฟียร์ เริ่มตั้งแต่ 600กิโลเมตรขึ้นไปจากผิวโลก บรรยากาศมีออกซิเจนจางมากๆ และมีก๊าซฮีเลียมและไฮโดรเจนอยู่เป็นส่วนมาก โดยมีชั้นติดต่อกับอวกาศ

โลกมีอุณหภูมิ 15 องศาเซลเซียส โดยเฉลี่ย

รูปร่าง

            โลก มีรูปทรงกระบอกแบนขั้ว หมายความว่ามีรูปทรงกระบอกแต่บริเวณขั้วโลกทั้งสองแบนเล็กน้อย และโป่งออกทางเส้นศูนย์สูตร ความยาวรอบโลกประมาณ 40,000 กิโลเมตร มีเส้นผ่านศูนย์กลางประมาณ 12,700 กิโลเมตร จุดที่สูงที่สุดบนพื้นโลกคือ ยอดเขาเอเวอร์เรสต์ ซึ่งมีความสูง 8,848 เมตรจากระดับน้ำทะเล ส่วนจุดที่ลึกที่สุดในโลกคือ ร่องลึกก้นสมุทรมาเรียนา ซึ่งมีความลึก 10,911 เมตรจากระดับน้ำทะเล เนื่องจากโลกมีลักษณะโป่งออกทางตอนกลางคือเส้นศูนย์สูตร ทำให้จุดที่ห่างไกลจากจุดศูนย์กลางโลกคือยอดเขาชิมโบราโซ ในประเทศเอกวาดอร์

ที่มาhttp://maneesudalpru.wordpress.com/category

  8 เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา

         8 เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา นี้เป็นเรื่องจริงที่ถูกค้นพบโดยนักวิทยาศาสตร์ การสำรวจ วิจัย เกี่ยวกับประวัติศาสตร์ ปรากฏการณ์ธรรมชาติต่างๆ รวมถึงเรื่องของระบบสุริยะ ดาวดวง ดวงจันทร์นอกโลก

1. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา : โลกเรามีอายุเยอะ

            นักวิทยาศาสตร์ได้พยายามหาอายุที่แท้จริงของโลก โดยการวัดอายุหินและอุกกาบาตที่แก่ที่สุด (ที่เคยมีการพบ) และพบว่าโลกแทบจะเกิดในเวลาเดียวกันกับระบบสุริยะถือกำเนิดขึ้นมาเลย พวกเขาพบว่าโลกน่าจะมีอายุประมาณ 4.54 พันล้านปี

8 เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา

                    ในภาพคือ หินที่อายุมากที่สุดในโลก ตั้งอยู่บริเวณอ่าวฮัดสัน ทางตอนเหนือของรัฐควิเบก ประเทศแคนาดา บริเวณนี้มีชื่อว่า Nuvvuagittuq Belt มีอายุประมาณ 4.28 พันล้านปี

2. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?แผ่นดินไหว บนดวงจันทร์

         ดวงจันทร์ก็มีแผ่นดินไหว ที่นักวิทยาศาสตร์เรียกกันว่า Moonquake แต่มีจำนวนและความรุนแรงน้อยกว่าบนโลก นักวิทยาศาสตร์ USGS กล่าวว่า แผ่นดินไหวบนดวงจันทร์มีส่วนเกี่ยวข้องกับ tidal stresses (แรงกดไทดัล) ที่มากน้อยขึ้นอยู่กับระยะทางระหว่างโลกกับดวงจันทร์ พวกเขายังพบอีกว่า แผ่นดินไหวบนดวงจันทร์มักจะเกิดลึกลงไปใต้พื้นดิน

3. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?แผ่นดินไหว

             แผ่นดินไหวที่วัดขนาดได้รุนแรงที่สุดในอเมริกามีขนาด 9.2 ริกเตอร์สเกล ที่ Prince William Sound อลาสกา ในวันที่ 28 มีนาคม 1964 (ในรูปคืออพาร์ทเมนต์โฟซีซัน สูง 6 ชั้น สร้างจากคอนกรีต ที่ถล่มลงมาหลังเกิดแผ่นดินไหว) ส่วนแผ่นดินไหวขนาดใหญ่ที่สุดในโลก วัดค่าได้ถึง 9.5 ริกเตอร์สเกล เกิดขึ้นเมื่อวันที่ 22 พฤษภาคม 1960 ในประเทศชิลี (ข้อมูลจาก USGS)

เทือกเขาที่ยาวที่สุด

4. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?เทือกเขาที่ยาวที่สุด

            หากต้องการจะมองหาเทือกเขาที่ยาวที่สุดในโลกแล้วละก็ ทุกคนคงต้องมาลงไปใต้ทะเลลึก จะพบกับเทือกเขากลางสมุทร (mid-oceanic range) แนวเทือกเขาใต้ทะเลโดยจะมีแนวร่องหุบที่รู้จักกันในนามของร่องแยก (rift) ที่สันของแนวเทือกเขาซึ่งเกิดขึ้นจากกระบวนการธรณีแปรสัณฐาน ซึ่งเป็นการแผ่ขยายออกของแผ่นเปลือกโลกใต้มหาสมุทร การยกตัวของพื้นมหาสมุทรเป็นผลเนื่องมาจากกระแสการพาความร้อน(convection currents) ซึ่งเป็นการดันตัวขึ้นมาของหินหนืดจากชั้นฐานธรณีภาค เทือกเขานี้มีความยาวกว่า 65,000 กิโลเมตร (บางที่บอก 80,000)

5. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?จุดที่หนาวที่สุดในโลก

           เมื่อคิดถึงความหนาวเย็นยะเยือก ทุกคนคงคิดถึงแอนตาร์คติกา ไม่แปลกนักเพราะทุกคนคิดถูก สถานีวอสตอคเป็นสถานีวิจัยในทวีปแอนตาร์กติกาของรัสเซียซึ่งสามารถตรวจวัดอุณหภูมิที่ต่ำที่สุดบนโลกเท่าที่เคยบันทึก โดยวัดได้ -89.2 ?ซ (เมื่อ 21 กรกฎาคม ค.ศ. 1983) สถานีดังกล่าวทำการวิจัยเกี่ยวกับการเจาะแกนน้ำแข็งและการวัดความเข้มข้นของสนามแม่เหล็ก

8 เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา

6. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?มันเดินทางไปรอบดวงอาทิตย์

                นอกจากจะหมุนวนรอบตัวเองแล้ว โลกเราก็หมุนรอบดวงอาทิตย์ด้วย (โดยใช้เวลาทั้งสิ้น 365 วันจึงจะครบ 1 รอบ) โดยใช้ความเร็วในการเดินทาง 67,000 ไมล์ต่อชั่วโมง (107,826 กิโลเมตรต่อชั่วโมง)

7. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา : เธอมีรอบเอว

                โลกของเรา (Mother Earth) มีรอบเอวที่ค่อนข้างกว้าง ด้วยความยาวของเส้นศูนย์สูตรหรือเส้นรอบวงที่ 24,901 ไมล์ หรือ 40,075 กิโลเมตร

8. เรื่องจริงน่ารู้ เกี่ยวกับโลกของเรา :?ดาวเคราะห์ดวงที่ 3

                โลก บ้านของเราเป็นดาวเคราะห์ดาวที่ 3 จากดวงอาทิตย์ และเป็นแห่งเดียวที่มีบรรยากาศเหมาะสำหรับสิ่งมีชีวิต เต็มไปด้วยอ็อกซิเจน แหล่งน้ำบนพื้นผิว และสำคัญที่สุด คือ สิ่งมีชีวิต

   ขอบคุณข้อมูล?http://www.nextsteptv.com/

เรื่องน้ำ

ทรัพยากรน้ำ
น้ำเป็นทรัพยากรที่มีความสำคัญต่อชีวิตคน พืช และสัตว์มากที่สุดแต่ก็มีค่าน้อยที่สุดเมื่อเปรียบเทียบกับทรัพยากรธรรมชาติอื่น ๆ น้ำเป็นปัจจัยสำคัญในการดำรงชีวิตของมนุษย์และเป็นองค์ประกอบที่สำคัญของสิ่งมีชีวิตทั้งหลาย ความสำคัญของทรัพยากรน้ำ
1. ใช้สำหรับการบริโภคและอุปโภค เพื่อดื่มกิน ประกอบอาหาร ชำระร่างกาย ทำความสะอาด ฯลฯ
2. ใช้สำหรับการเกษตร ได้ แก่ การเพาะปลูก เลี้ยงสัตว์ แหล่งน้ำเป็นที่อยู่อาศัยของปลาและสัตว์น้ำอื่น ๆ ซึ่งคนเราใช้เป็นอาหาร
3. ด้านอุตสาหกรรม ต้องใช้น้ำในกระบวนการผลิต ล้างของเสีย หล่อเครื่องจักร และระบายความร้อน ฯลฯ
4. การทำนาเกลือ โดยการระเหยน้ำเค็มจากทะเล หรือระเหยน้ำที่ใช้ละลายเกลือสินเธาว์
5. น้ำเป็นแหล่งพลังงานในการผลิตกระแสไฟฟ้า
6. เป็นเส้นทางคมนาคมที่สำคัญ แม่น้ำ ลำคลอง ทะเล มหาสมุทร เป็นเส้นทางคมนาคมที่สำคัญมาตั้งแต่อดีตจนถึงปัจจุบัน
7. เป็นสถานที่ท่องเที่ยว ทัศนียภาพของริมฝั่งทะเล และแหล่งน้ำที่ใสสะอาดเป็นสถานที่ท่องเที่ยวของมนุษย์ น้ำเป็นแหล่งกำเนิดชีวิตของสัตว์และพืชคนเรามีชีวิตอยู่โดยขาดน้ำได้ไม่เกิน 3 วัน และน้ำยังมีความจำเป็นทั้งในภาคเกษตรกรรมและอุตสาหกรรม ซึ่งมีความสำคัญอย่างยิ่งในการพัฒนาประเทศ ประโยชน์ของน้ำ ได้แก่
– น้ำเป็นสิ่งจำเป็นที่เราใช้สำหรับการดื่มกิน การประกอบอาหาร ชำระร่างกาย ฯลฯ
– น้ำมีความจำเป็นสำหรับการเพาะปลูกเลี้ยงสัตว์ แหล่งน้ำเป็นที่อยู่อาศัยของปลาและสัตว์น้ำอื่น ๆ ซึ่งคนเราใช้เป็นอาหาร
– ในการอุตสาหกรรม ต้องใช้น้ำในขบวนการผลิตใช้ล้างของเสียใช้หล่อเครื่องจักรและระบายความร้อน ฯลฯ
– การทำนาเกลือโดยการระเหยน้ำเค็มจากทะเล
– น้ำเป็นแหล่งพลังงาน พลังงานจากน้ำใช้ทำระหัด ทำเขื่อนผลิตกระแสไฟฟ้าได้
– แม่น้ำ ลำคลอง ทะเล มหาสมุทร เป็นเส้นทางคมนาคมขนส่งที่สำคัญ
– ทัศนียภาพของริมฝั่งทะเลและน้ำที่ใสสะอาดเป็นแหล่งท่องเที่ยวของมนุษย์ปัญหาทรัพยากรน้ำ ที่สำคัญมีดังนี้
1. เพิ่มปริมาณความต้องการใช้น้ำ ในปัจจุบันนอกจากการใช้น้ำเพื่อการบริโภคซึ่งเพิ่มขึ้นแล้วประมาณ 30% ถึง 40% ในการผลิตอาหารของโลกจำเป็นต้องใช้น้ำจากการชลประทานภายในระยะเวลาประมาณ 15-20 ปีข้างหน้านี้ บริเวณพื้นที่ชลประทานจะต้องเพิ่มขึ้นเป็น 2 เท่า ของปริมาณ พื้นที่ในปัจจุบัน เพื่อที่จะผลิตอาหารให้ได้เพียงพอแก่จำนวนประชากรที่เพิ่มขึ้น
2. การกระจานน้ำไปสู่ส่วนต่าง ๆ ของพื้นที่ไม่เท่าเทียมกัน ในบางพื้นที่ของโลกเกิดฝน ตกหนักบ้านเรือนไร่นาเสียหาย แต่ในบางพื้นที่ก็แห้งแล้งขาดแคลนน้ำเพื่อการบริโภค และเพื่อการเพาะปลูก
3. การเพิ่มมลพิษในน้ำ เนื่องจากน้ำเป็นปัจจัยสำคัญในการดำรงชีวิตของสิ่งมีชีวิตทั้งหลายรวมทั้งมนุษย์ เมื่อจำนวนประชากรมนุษย์เพิ่มมากขึ้น มนุษย์เป็นตัวการสำคัญที่เพิ่มมลพิษให้กับแหล่งน้ำต่าง ๆ โดยการปล่อยน้ำเสีย คราบน้ำมัน จากบ้านเรือน โรงงานอุตสาหกรรม การทิ้งขยะมูลฝอยลงไปในแหล่ง เป็นต้น – เป็นแหล่งแพร่ระบาดของเชื้อโรค เช่น อหิวาตกโรค บิด ท้องเสีย
– เป็นแหล่งเพาะพันธุ์ของแมลงนำโรคต่าง ๆ
– ทำให้เกิดปัญหามลพิษต่อดิน น้ำ และอากาศ
– ทำให้เกิดเหตุรำคาญ เช่น กลิ่นเหม็นของน้ำโสโครก
– ทำให้เกิดการสูญเสียทัศนียภาพ เกิดสภาพที่ไม่น่าดู เช่น สภาพน้ำที่มีสีดำคล้ำไปด้วยขยะ และสิ่งปฎิกูล
– ทำให้เกิดการสูญเสียทางเศรษฐกิจ เช่น การสูญเสียพันธุ์ปลาบางชนิดจำนวนสัตว์น้ำลดลง
– ทำให้เกิดการเปลี่ยนแปลงระบบนิเวศในระยะยาว

โคลงสร้างโลก

38763_full

กำเนิดโลก

           เมื่อประมาณ 4,600 ล้านปีมาแล้ว กลุ่มก๊าซในเอกภพบริเวณนี้ ได้รวมตัวกันเป็นหมอกเพลิงมีชื่อว่า “โซลาร์เนบิวลา” (Solar แปลว่า สุริยะ, Nebula แปลว่า หมอกเพลิง) แรงโน้มถ่วงทำให้กลุ่มก๊าซยุบตัวและหมุนตัวเป็นรูปจาน ใจกลางมีความร้อนสูงเกิดปฏิกิริยานิวเคลียร์แบบฟิวชั่น กลายเป็นดาวฤกษ์ที่ชื่อว่าดวงอาทิตย์ ส่วนวัสดุที่อยู่รอบๆ มีอุณหภูมิต่ำกว่า รวมตัวเป็นกลุ่มๆ มีมวลสารและความหนาแน่นมากขึ้นเป็นชั้นๆ และกลายเป็นดาวเคราะห์ในที่สุด (ภาพที่ 1)


ภาพที่ 1 กำเนิดระบบสุริยะ

          โลกในยุคแรกเป็นของเหลวหนืดร้อน ถูกกระหน่ำชนด้วยอุกกาบาตตลอดเวลา องค์ประกอบซึ่งเป็นธาตุหนัก เช่น เหล็ก และนิเกิล จมตัวลงสู่แก่นกลางของโลก ขณะที่องค์ประกอบซึ่งเป็นธาตุเบา เช่น ซิลิกอน ลอยตัวขึ้นสู่เปลือกนอก ก๊าซต่างๆ เช่น ไฮโดรเจนและคาร์บอนไดออกไซด์ พยายามแทรกตัวออกจากพื้นผิว ก๊าซไฮโดรเจนถูกลมสุริยะจากดวงอาทิตย์ทำลายให้แตกเป็นประจุ ส่วนหนึ่งหลุดหนีออกสู่อวกาศ อีกส่วนหนึ่งรวมตัวกับออกซิเจนกลายเป็นไอน้ำ เมื่อโลกเย็นลง เปลือกนอกตกผลึกเป็นของแข็ง ไอน้ำในอากาศควบแน่นเกิดฝน น้ำฝนได้ละลายคาร์บอนไดออกไซด์ลงมาสะสมบนพื้นผิว เกิดทะเลและมหาสมุทร สองพันล้านปีต่อมาการวิวัฒนาการของสิ่งมีชีวิต ได้นำคาร์บอนไดออกไซด์มาผ่านการสังเคราะห์แสง เพื่อสร้างพลังงาน และให้ผลผลิตเป็นก๊าซออกซิเจน ก๊าซออกซิเจนที่ลอยขึ้นสู่ชั้นบรรยากาศชั้นบน แตกตัวและรวมตัวเป็นก๊าซโอโซน ซึ่งช่วยป้องกันอันตรายจากรังสีอุลตราไวโอเล็ต ทำให้สิ่งมีชีวิตมากขึ้น และปริมาณของออกซิเจนมากขึ้นอีก ออกซิเจนจึงมีบทบาทสำคัญต่อการเปลี่ยนแปลงบนพื้นผิวโลกในเวลาต่อมา (ภาพที่ 2)


ภาพที่ 2 กำเนิดโลก

โครงสร้างภายในของโลก
โลกมีขนาดเส้นผ่านศูนย์กลางยาว 12,756 กิโลเมตร (รัศมี 6,378 กิโลเมตร) มีมวลสาร 6 x 10^24 กิโลกรัม และมีความหนาแน่นเฉลี่ย 5,520 กิโลกรัมต่อลูกบาศก์เมตร (หนาแน่นกว่าน้ำ 5,520 เท่า) นักธรณีวิทยาทำการศึกษาโครงสร้างภายในของโลก โดยศึกษาการเดินทางของ “คลื่นซิสมิค” (Seismic waves) ซึ่งมี 2 ลักษณะ คือ


ภาพที่ 3 คลื่นปฐมภูมิ (P wave) และคลื่นทุติยภูมิ (S wave)
คลิก เพื่อดูภาพเคลื่อนไหว

            คลื่นปฐมภูมิ (P wave) เป็นคลื่นตามยาวที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางนั้นเกิดการเคลื่อนไหวแบบอัดขยายในแนวเดียวกับที่คลื่นส่งผ่านไป คลื่นนี้สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของแข็ง ของเหลว และก๊าซ เป็นคลื่นที่สถานีวัดแรงสั่นสะเทือนสามารถรับได้ก่อนชนิดอื่น โดยมีความเร็วประมาณ 6 – 8 กิโลเมตร/วินาที คลื่นปฐมภูมิทำให้เกิดการอัดหรือขยายตัวของชั้นหิน ดังภาพที่ 3

 คลื่นทุติยภูมิ (S wave) เป็นคลื่นตามขวางที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางเคลื่อนไหวตั้งฉากกับทิศทางที่คลื่นผ่าน มีทั้งแนวตั้งและแนวนอน คลื่นชนิดนี้ผ่านได้เฉพาะตัวกลางที่เป็นของแข็งเท่านั้น ไม่สามารถเดินทางผ่านของเหลว คลื่นทุติยภูมิมีความเร็วประมาณ 3 – 4 กิโลเมตร/วินาที คลื่นทุติยภูมิทำให้ชั้นหินเกิดการคดโค้ง


ภาพที่ 4 การเดินทางของ P wave และ S wave ขณะเกิดแผ่นดินไหว
คลิก เพื่อดูภาพเคลื่อนไหว

          ขณะที่เกิดแผ่นดินไหว (Earthquake) จะเกิดแรงสั่นสะเทือนหรือคลื่นซิสมิคขยายแผ่จากศูนย์เกิดแผ่นดินไหวออกไปโดยรอบทุกทิศทุกทาง เนื่องจากวัสดุภายในของโลกมีความหนาแน่นไม่เท่ากัน และมีสถานะต่างกัน คลื่นทั้งสองจึงมีความเร็วและทิศทางที่เปลี่ยนแปลงไปดังภาพที่ 4 คลื่นปฐมภูมิหรือ P wave สามารถเดินทางผ่านศูนย์กลางของโลกไปยังซีกโลกตรงข้ามโดยมีเขตอับ (Shadow zone) อยู่ระหว่างมุม 100 – 140 องศา แต่คลื่นทุติยภูมิ หรือ S wave ไม่สามารถเดินทางผ่านชั้นของเหลวได้ จึงปรากฏแต่บนซีกโลกเดียวกับจุดเกิดแผ่นดินไหว โดยมีเขตอับอยู่ที่มุม 120 องศาเป็นต้นไป

โครงสร้างภายในของโลกแบ่งตามองค์ประกอบทางเคมี

นักธรณีวิทยา แบ่งโครงสร้างภายในของโลกออกเป็น 3 ส่วน โดยพิจารณาจากองค์ประกอบทางเคมี ดังนี้ (ภาพที่ 5)
 เปลือกโลก (Crust) เป็นผิวโลกชั้นนอก มีองค์ประกอบส่วนใหญ่เป็นซิลิกอนไดออกไซด์ และอะลูมิเนียมออกไซด์

 แมนเทิล (Mantle) คือส่วนซึ่งอยู่อยู่ใต้เปลือกโลกลงไปจนถึงระดับความลึก 2,900 กิโลเมตร มีองค์ประกอบหลักเป็นซิลิคอนออกไซด์ แมกนีเซียมออกไซด์ และเหล็กออกไซด์

 แก่นโลก (Core) คือส่วนที่อยู่ใจกลางของโลก มีองค์ประกอบหลักเป็นเหล็ก และนิเกิล


ภาพที่ 5 องค์ประกอบทางเคมีของโครงสร้างภายในของโลก


ภาพที่ 6 โครงสร้างภายในของโลก
คลิก เพื่อดูภาพเคลื่อนไหว

โครงสร้างภายในของโลกแบ่งตามคุณสมบัติทางกายภาพ
นักธรณีวิทยา แบ่งโครงสร้างภายในของโลกออกเป็น 5 ส่วน โดยพิจารณาจากคุณสมบัติทางกายภาพ ดังนี้ (ภาพที่ 6)
 ลิโทสเฟียร์ (Lithosphere) คือ ส่วนชั้นนอกสุดของโลก ประกอบด้วย เปลือกโลกและแมนเทิลชั้นบนสุด ดังนี้
o เปลือกทวีป (Continental crust) ส่วนใหญ่เป็นหินแกรนิตมีความหนาเฉลี่ย 35 กิโลเมตร ความหนาแน่น 2.7 กรัม/ลูกบาศก์เซนติเมตร
o เปลือกสมุทร (Oceanic crust) เป็นหินบะซอลต์ความหนาเฉลี่ย 5 กิโลเมตร ความหนาแน่น 3 กรัม/ลูกบาศก์เซนติเมตร (มากกว่าเปลือกทวีป)
o แมนเทิลชั้นบนสุด (Uppermost mantle) เป็นวัตถุแข็งซึ่งรองรับเปลือกทวีปและเปลือกสมุทรอยู่ลึกลงมาถึงระดับลึก 100 กิโลเมตร
 แอสทีโนสเฟียร์ (Asthenosphere) เป็นแมนเทิลชั้นบนซึ่งอยู่ใต้ลิโทสเฟียร์ลงมาจนถึงระดับ 700 กิโลเมตร เป็นวัสดุเนื้ออ่อนอุณหภูมิประมาณ 600 – 1,000ฐC เคลื่อนที่ด้วยกลไกการพาความร้อน (Convection) มีความหนาแน่นประมาณ 3.3 กรัม/เซนติเมตร
 เมโซสเฟียร์ (Mesosphere) เป็นแมนเทิลชั้นล่างซึ่งอยู่ลึกลงไปจนถึงระดับ 2,900 กิโลเมตร มีสถานะเป็นของแข็งอุณหภูมิประมาณ 1,000 – 3,500ฐC มีความหนาแน่นประมาณ 5.5 กรัม/เซนติเมตร
 แก่นชั้นนอก (Outer core) อยู่ลึกลงไปถึงระดับ 5,150 กิโลเมตร เป็นเหล็กหลอมละลายมีอุณหภูมิสูง 1,000 – 3,500ฐC เคลื่อนตัวด้วยกลไกการพาความร้อนทำให้เกิดสนามแม่เหล็กโลก มีความหนาแน่น 10 กรัม/ลูกบาศก์เซนติเมตร
 แก่นชั้นใน (Inner core) เป็นเหล็กและนิเกิลในสถานะของแข็งซึ่งมีอุณหภูมิสูงถึง 5,000 ?C ความหนาแน่น 12 กรัมต่อลูกบาศก์เซนติเมตร จุดศูนย์กลางของโลกอยู่ที่ระดับลึก 6,370 กิโลเมตร

สนามแม่เหล็กโลก
แก่นโลกมีองค์ประกอบหลักเป็นเหล็ก แก่นโลกชั้นใน (Inner core) มีความกดดันสูงจึงมีสถานะเป็นของแข็ง ส่วนแก่นชั้นนอก (Outer core) มีความกดดันน้อยกว่าจึงมีสถานะเป็นของเหลวหนืด แก่นชั้นในมีอุณหภูมิสูงกว่าแก่นชั้นนอก พลังงานความร้อนจากแก่นชั้นใน จึงถ่ายเทขึ้นสู่แก่นชั้นนอกด้วยการพาความร้อน (Convection) เหล็กหลอมละลายเคลื่อนที่หมุนวนอย่างช้าๆ ทำให้เกิดการเคลื่อนที่ของกระแสไฟฟ้า และเหนี่ยวนำให้เกิดสนามแม่เหล็กโลก (The Earth’s magnetic field)


ภาพที่ 7 แกนแม่เหล็กโลก
คลิก เพื่อดูภาพเคลื่อนไหว

          อย่างไรก็ตามแกนแม่เหล็กโลกและแกนหมุนของโลกมิใช่แกนเดียวกัน แกนแม่เหล็กโลกมีขั้วเหนืออยู่ทางด้านใต้ และมีแกนใต้อยู่ทางด้านเหนือ แกนแม่เหล็กโลกเอียงทำมุมกับแกนเหนือ-ใต้ทางภูมิศาสตร์ (แกนหมุนของโลก) 12 องศา ดังภาพที่ 7


ภาพที่ 8 สนามแม่เหล็กโลก

          สนามแม่เหล็กโลกก็มิใช่เป็นรูปทรงกลม (ภาพที่ 8) อิทธิพลของลมสุริยะทำให้ด้านที่อยู่ใกล้ดวงอาทิตย์มีความกว้างน้อยกว่าด้านตรงข้ามดวงอาทิตย์ สนามแม่เหล็กโลกไม่ใช่สิ่งคงที่ แต่มีการเปลี่ยนแปลงความเข้มและสลับขั้วเหนือ-ใต้ ทุกๆ หนึ่งหมื่นปี ในปัจจุบันสนามแม่เหล็กโลกอยู่ในช่วงที่มีกำลังอ่อน สนามแม่เหล็กโลกเป็นสิ่งที่จำเป็นที่เอื้ออำนวยในการดำรงชีวิต หากปราศจากสนามแม่เหล็กโลกแล้ว อนุภาคพลังงานสูงจากดวงอาทิตย์และอวกาศ จะพุ่งชนพื้นผิวโลก ทำให้สิ่งมีชีวิตไม่สามารถดำรงอยู่ได้ (ดูรายละเอียดเพิ่มเติมในบทที่ 3 พลังงานจากดวงอาทิตย์)

เกร็ดความรู้: ทิศเหนือที่อ่านได้จากเข็มทิศแม่เหล็ก อาจจะไม่ตรงกับทิศเหนือจริง ด้วยเหตุผล 2 ประการคือ
 ขั้วแม่เหล็กโลก และขั้วโลก มิใช่จุดเดียวกัน
 ในบางพื้นที่ของโลก เส้นแรงแม่เหล็กมีความเบี่ยงเบน (Magnetic deviation) มิได้ขนานกับเส้นลองจิจูด (เส้นแวง) ทางภูมิศาสตร์ แต่โชคดีที่บริเวณประเทศไทยมีค่าความเบี่ยงเบน = 0 ดังนั้นจึงถือว่า ทิศเหนือแม่เหล็กเป็นทิศเหนือจริงได้

กระบวนการเปลี่ยนเเปลงทางธรณีวิทยาบนเปลือกโลก

yuii

การเปลี่ยนแปลงทางธรณี

ธรณีภาค

ธรณีภาค (lithosphere) คือชั้นเนื้อโลกส่วนบนกับชั้นเปลือกโลกรวมกันชั้นธรณีภาคมีความหนาประมาณ 100 กิโลเมตรนับจากผิวโลกลงไปเปลือกโลกมีการเปลี่ยนแปลงตลอดเวลาการศึกษาการเปลี่ยนแปลง ของเปลือกโลกทั้งส่วนที่เป็นพื้นดิน พื้นน้ำและส่วนที่เป็นบรรยากาศจัดเป็นวิธีการหนึ่งที่จะช่วยป้องกันผลกระทบที่เกิดจากการเปลี่ยนแปลงทางธรณีวิทยา ได้แก่แผ่นดินไหวและภูเขาไฟระเบิด ซึ่งเป็นพิบัติภัยที่มีผลกระทบต่อชีวิตและทรัพย์สินของมนุษย์การศึกษาการเปลี่ยนแปลงของเปลือกโลกทำให้เกิดทฤษฎีหลากหลายแต่ทฤษฎีที่เป็นที่ยอมรับกันในปัจจุบันและอธิบายถึงกำเนิดของแผ่นดินมหาสมุทร และสิ่งมีชีวิตที่ตายทับถมอยู่ในหินบนเปลือกโลก คือทฤษฎีการแปรสัณฐานแผ่นธรณีภาค (plate tectonic)

แผ่นธรณีภาคและการเคลื่อนที่

รูปแสดงขั้นตอนการเลื่อนของแผ่นธรณีภาคจากอดีตถึงปัจจุบัน

ในปี พ.ศ. 2458 นักอุตุนิยมวิทยาชาวเยอรมันชื่อ ดร.อัลเฟรดเวเกเนอร์ (Dr. Alfred Wegener) ตั้งสมมุติฐานเกี่ยวกับการเลื่อนของแผ่นธรณีภาคจากอดีตถึงปัจจุบันโดยกำหนดว่า เมื่อประมาณ3002200 ล้านปีมาแล้วผืนแผ่นดินทั้งหมดบนโลกเป็นแผ่นดินผืนเดียวกันเรียกว่า พันเจีย (pangaea) ซึ่งเป็นภาษากรีก แปลว่าแผ่นดินทั้งหมด (all land) ต่อมาเกิดการเลื่อนตัวของแผ่นธรณีภาคเป็นขั้นตอน ดังนี้
1. เมื่อ 2002135 ล้านปี พันเจียเริ่มแยกออกเป็นทวีปใหญ่ 2 ทวีปคือ ลอเรเซียทางตอนเหนือและกอนด์วานาทางตอนใต้โดยกอนด์วานาจะแตกและเคลื่อนแยกจากกันเป็นอินเดีย อเมริกาใต้ และแอฟริกาในขณะที่ออสเตรเลียยังคงเป็นส่วนหนึ่งของกอนด์วานา
2. เมื่อ 135265 ล้านปี มหาสมุทรแอตแลนติกแยกตัวกว้างขึ้นทำให้แอฟริกาเคลื่อนที่ห่างออกไปจากอเมริกาใต้แต่ออสเตรเลียยังคงเชื่อมอยู่กับแอนตาร์กติกาและอเมริกาเหนือกับยุโรปยังคงต่อเนื่องกัน
3. เมื่อ 65 ล้านปี2ปัจจุบัน มหาสมุทรแอตแลนติกขยายกว้างขึ้นอีกอเมริกาเหนือและยุโรปแยกจากกันอเมริกาเหนือโค้งเว้าเข้าเชื่อมกับอเมริกาใต้ ออสเตรเลียแยกจากแอนตาร์กติกาและอินเดียเคลื่อนไปชนกับเอเชียจนเกิดเป็นภูเขาหิมาลัยกลายเป็นแผ่นดินและผืนมหาสมุทรดังปัจจุบัน

หลักฐานและข้อมูลทางธรณีวิทยา

หลักฐานและข้อมูลต่างๆ ที่ทำให้นักวิทยาศาสตร์เชื่อในทฤษฎีการแปรสัณฐานแผ่นธรณีภาค ได้แก่
1. รอยต่อของแผ่นธรณีภาค
2. รอยแยกของแผ่นธรณีภาค และอายุของหินบนเทือกเขากลางมหาสมุทร
3. การค้นพบซากดึกดำบรรพ์
4. การเปลี่ยนแปลงของอากาศ
5. สนามแม่เหล็กโลกโบราณ

รอยต่อของแผ่นธรณีภาค

นักธรณีวิทยาแบ่งแผ่นธรณีภาคของโลกออกเป็น 2 ประเภท คือแผ่นธรณีภาคภาคพื้นทวีป และแผ่นธรณีภาคใต้มหาสมุทร รวมทั้งหมด 12 แผ่นได้แก่
1. แผ่นยูเรเชีย
2. แผ่นอเมริกาเหนือ
3. แผ่นอเมริกาใต้
4. แผ่นอินเดีย (แผ่นออสเตรเลีย2อินเดีย)
5. แผ่นแปซิฟิก
6. แผ่นนาสกา
7. แผ่นแอฟริกา
8. แผ่นอาระเบีย
9. แผ่นฟิลิปปินส์
10. แผ่นแอนตาร์กติกา
11. แผ่นคาริบเบีย
12. แผ่นคอคอส
แต่ละแผ่นธรณีภาคจะมีการเคลื่อนที่ตลอดเวลาบางแผ่นเคลื่อนที่เข้าหากัน บางแผ่นเคลื่อนที่แยกออกจากกันบางแผ่นเคลื่อนที่ผ่านกันนอกจากนั้นยังมีรอยเลื่อนปรากฏบนแผ่นธรณีภาคบางแผ่น เช่นรอยเลื่อนซานแอนเดรียสบนแผ่นอเมริกาเหนือรอยเลื่อนแอนาโทเลียบนแผ่นยูเรเชีย เป็นต้น

รูปแสดงแผ่นธรณีภาคบริเวณต่างๆ ของโลก

เมื่อพิจารณาแผนที่โลกปัจจุบันพบว่าทวีปแต่ละทวีปมีรูปร่างต่างกัน แต่เมื่อนำแผ่นภาพของแต่ละทวีปมาต่อกันจะเห็นว่ามีส่วนที่สามารถต่อกันได้พอดี เช่นขอบตะวันออกของทวีปอเมริกาใต้สามารถต่อกับขอบตะวันตกของทวีปแอฟริกาใต้ได้อย่างพอดีเสมือนหนึ่งว่าทวีปทั้งสองน่าจะเป็นแผ่นดินเดียวกันมาก่อนต่อมามีการเคลื่อนที่แยกออกจากกัน ส่วนหนึ่งเคลื่อนไปทางตะวันออกอีกส่วนหนึ่งเคลื่อนไปทางตะวันตก และมีมหาสมุทรแอตแลนติกเข้ามาแทนที่ตรงรอยแยกแผ่นทวีปทั้งสองมีการเคลื่อนแยกจากกันเรื่อยๆจนมีตำแหน่งและรูปร่างดังปัจจุบัน

รูปแสดงแนวขอบของทวีปต่างๆ ในปัจจุบันที่คิดว่าเคยต่อเชื่อมเป็นผืนเดียวกัน
กระบวนการเปลี่ยนแปลงของเปลือกโลกเป็นผลทำให้แผ่นธรณีภาคเกิดการเคลื่อนที่แยกออกจากกันจนทำให้มีลักษณะดังปัจจุบันรอยแยกของแผ่นธรณีภาคและอายุหินบนเทือกเขากลางมหาสมุทร
จากรูปแสดงเทือกเขากลางมหาสมุทรพบว่า ลักษณะเด่นของพื้นที่มหาสมุทรแอตแลนติก คือ

1. เทือกเขากลางมหาสมุทรซึ่งมีลักษณะเป็นเทือกเขายาวที่โค้งอ้อมไปตามรูปร่าง ของขอบทวีป ด้านหนึ่งเกือบขนานกับชายฝั่งของประเทศสหรัฐอเมริกาส่วนอีกด้านหนึ่งขนานกับชายฝั่งของทวีปยุโรปและทวีปแอฟริกา

รูปแสดงเทือกเขากลางมหาสมุทรแอตแลนติก

2. เทือกเขากลางมหาสมุทรมีรอยแยกตัวออกเป็นร่องลึกไปตลอดความยาวของเทือกเขา
3. มีรอยแตกตัดขวางบนสันเขากลางมหาสมุทรมากมาย รอยแตกเหล่านี้เป็นศูนย์กลางของการเกิดแผ่นดินไหวและภูเขาไฟระเบิด
4. มีเทือกเขาเล็กๆกระจัดกระจายอยู่ทั้งทางตะวันออกและตะวันตกของพื้นมหาสมุทรบริเวณที่เป็นประเทศอังกฤษในปัจจุบันเป็นเกาะที่อยู่บนไหล่ทวีปที่มีส่วนของแผ่นดินใต้พื้นน้ำต่อเนื่องกับทวีป ยุโรป
ในปี พ.ศ. 2503 มีการสำรวจใต้ทะเลและมหาสมุทรใหญ่ทั้ง 3 แห่งด้วยเครื่องมือที่ทันสมัย ทำให้พบหินบะซอลต์ที่บริเวณร่องลึก หรือรอยแยกบริเวณเทือกเขากลางมหาสมุทรแอตแลนติกและพบว่าหินบะซอลต์ที่อยู่ไกลจากรอยแยกจะมีอายุมากกว่าหินบะซอลต์ที่อยู่ ใกล้รอยแยกหรือในรอยแยกจากหลักฐานดังกล่าวสามารถอธิบายการเปลี่ยนแปลงได้ดังนี้เมื่อเกิดรอยแยกแผ่นดินจะเกิดการเคลื่อนตัวออกจากกันอย่างช้าๆ ตลอดเวลาขณะเดียวกันเนื้อของหินบะซอลต์จากส่วนล่างจะถูกดันแทรกเสริมขึ้นมาตรงรอยแยก เป็นเปลือกโลกใหม่ ทำให้ตรงกลางรอยแยกเกิดหินบะซอลต์ใหม่เรื่อยๆโครงสร้างและอายุหินรองรับแผ่นธรณีภาคจึงมีอายุอ่อนสุดบริเวณเทือกเขากลางมหาสมุทร และอายุมากขึ้นเมื่อเข้าใกล้ขอบทวีป ดังรูป

รูปแสดงอายุของหินบะซอลต์บริเวณรอยแยกกลางมหาสมุทรแอตแลนติก

นักธรณีวิทยาได้ศึกษารอยต่อของแผ่นธรณีภาคพบว่า แผ่นธรณีภาคมีการเคลื่อนที่มีลักษณะต่างๆ ดังนี้

1. ขอบแผ่นธรณีภาคแยกออกจากกันขอบแผ่นธรณีภาคที่แยกจากกันนี้เนื่องจากการดันตัวของแมกมาในชั้นธรณีภาค ทำให้เกิดรอยแตกในชั้นหินแข็งแมกมาสามารถถ่ายโอนความร้อนสู่ชั้นเปลือกโลกอุณหภูมิและความดันของแมกมาลดลงเป็นผลให้เปลือกโลกตอนบนทรุดตัวกลายเป็นหุบ เขาทรุด (rift valley)


รูปแสดงการแยกออกจากกันของแผ่นธรณีภาคภาคพื้นทวีป

ต่อมาน้ำทะเลไหลมาสะสมกลายเป็นทะเล และเกิดรอยแตกจนเป็นร่องลึกเมื่อแมกมาเคลื่อนตัวแทรกขึ้นมาตามรอยแตกเป็นผลให้แผ่นธรณีภาคใต้มหาสมุทรเคลื่อนตัวแยกออกไปทั้งสองข้างทำให้พื้นทะเลขยายกว้างออกไปทั้งสองด้านเรียกว่ากระบวนการขยายตัวของพื้นทะเล (sea floor spreading) และปรากฏเป็นเทือกเขากลางมหาสมุทร เช่น บริเวณกลางมหาสมุทรแอตแลนติกบริเวณทะเลแดง รอยแยกแอฟริกาตะวันออก อ่าวแคลิฟอร์เนียมีลักษณะเป็นหุบเขาทรุด มีร่องรอยการแยก เกิดแผ่นดินไหวตื้นๆมีภูเขาไฟและลาวาไหลอยู่ใต้มหาสมุทร

รูปแสดงการแยกออกจากกันของแผ่นธรณีภาคใต้มหาสมุทร

ในขณะที่แผ่นธรณีภาคเกิดรอยแตกและเลื่อนตัวจะมีผลทำให้เกิดคลื่นไหวสะเทือนไปยังบริเวณต่างๆใกล้เคียงกับจุดที่เกิดรอยแตกรอยเลื่อนในชั้นธรณีภาคเกิดเป็นปรากฏการณ์แผ่นดินไหว

2. ขอบแผ่นธรณีภาคเคลื่อนที่เข้าหากันแบ่งเป็น 3 ลักษณะ คือ
2.1 แผ่นธรณีภาคใต้มหาสมุทรชนกับแผ่นธรณีภาคใต้มหาสมุทรแผ่นธรณีภาคแผ่นหนึ่งจะมุดลงใต้อีกแผ่นหนึ่งปลายของแผ่นที่มุดลงจะหลอมตัวกลายเป็นแมกมาและปะทุขึ้นมาบนแผ่นธรณีภาคใต้ มหาสมุทร เกิดเป็นแนวภูเขาไฟกลางมหาสมุทร เช่น ที่หมู่เกาะมาริอานาส์อาลูเทียน ญี่ปุ่น ฟิลิปปินส์หมู่เกาะฮาวายจะมีลักษณะเป็นร่องใต้ทะเลลึกมีแนวการเกิดแผ่นดินไหวตามแนวของแผ่นธรณีภาคลึกลงไปถึงชั้นเนื้อโลกรวมทั้งมีภูเขาไฟที่ยังมีพลัง

                       รูปแสดงการชนกันระหว่างแผ่นธรณีภาคใต้มหาสมุทรกับแผ่นธรณีภาคใต้มหาสมุทร

2.2 แผ่นธรณีภาคใต้มหาสมุทรชนกับแผ่นธรณีภาคภาคพื้นทวีปแผ่นธรณีภาคใต้มหาสมุทร ที่หนักกว่าจะมุดลงใต้แผ่นธรณีภาคภาคพื้นทวีปทำให้เกิดรอยคดโค้งเป็นเทือกเขาบนแผ่นธรณีภาคภาคพื้นทวีปเช่นที่อเมริกาใต้แถบตะวันตก แนวชายฝั่งโอเรกอนจะมีลักษณะเป็นร่องใต้ทะเลลึกตามแนวขอบทวีปมีภูเขาไฟปะทุในส่วนที่เป็นแผ่นดิน เกิดเป็นแนวภูเขาไฟชายฝั่งและเกิดแผ่นดินไหวรุนแรง ส่วนแนวขอบด้านตะวันออก-เฉียงเหนือของแผ่นธรณีภาคอาระเบียที่เคลื่อนที่เข้าหาและมุดกันกับแนวขอบ ด้านใต้ของแผ่นธรณีภาคยูเรเชียจะเกิดเป็นร่องลึกก้นมหาสมุทรและเกิดเป็นเทือกเขาคดโค้งอยู่บนแผ่นธรณีภาคในบริเวณประเทศตะวันออกกลางปัจจุบันบริเวณนี้กลายเป็นแหล่งสะสมน้ำมันดิบแหล่งใหญ่ของโลก

        รูปแสดงการชนกันระหว่างแผ่นธรณีภาคใต้มหาสมุทรกับแผ่นธรณีภาคภาคพื้นทวีป

2.3 แผ่นธรณีภาคภาคพื้นทวีปชนกับแผ่นธรณีภาคภาคพื้นทวีปเนื่องจากแผ่นธรณีภาคภาคพื้นทวีปทั้ง 2 แผ่นมีความหนามากเมื่อชนกันจะทำให้ส่วนหนึ่งมุดลง อีกส่วนหนึ่งเกยกันอยู่เกิดเป็นเทือกเขาสูงแนวยาวอยู่ในแผ่นธรณีภาคภาคพื้นทวีป เช่นเทือกเขาแอลป์ในทวีปยุโรป เทือกเขาหิมาลัยในทวีปเอเชีย เป็นต้นแนวขอบด้านทิศเหนือของแผ่นธรณีภาคอินเดียเคลื่อนที่ชนและมุดกับแผ่นธรณีภาค ยูเรเชียทางตอนใต้ ทำให้เกิดเทือกเขาหิมาลัยบริเวณดังกล่าวจะเป็นรอยย่นคดโค้งเป็นเขตที่ราบสูงเสมือนเป็นหลังคาของโลก

รูปแสดงการเคลื่อนที่ชนกันระหว่างแผ่นธรณีภาคภาคพื้นทวีปและแผ่นธรณีภาคภาคพื้นทวีป

3. ขอบแผ่นธรณีภาคเคลื่อนที่ผ่านกันเนื่องจากอัตราการเคลื่อนตัวของแมกมาในชั้นเนื้อโลกไม่เท่ากันทำให้แผ่นธรณีภาคในแต่ละส่วนมีอัตราการเคลื่อนที่ไม่เท่ากันด้วยทำให้เปลือกโลกใต้มหาสมุทรและบางส่วนของเทือกเขาใต้มหาสมุทรไถลเลื่อนผ่านและเฉือนกันเกิดเป็นรอยเลื่อนเฉือนระนาบด้านข้างขนาดใหญ่ขึ้นสันเขากลางมหาสมุทรถูกรอยเลื่อนขึ้นตัดเฉือนเป็นแนวเหลื่อมกันอยู่มีลักษณะเป็นแนวรอยแตกแคบยาวมีทิศทางตั้งฉากกับเทือกเขากลางมหาสมุทรและร่องใต้ทะเลลึกมักจะเกิดแผ่นดินไหวรุนแรงในระดับตื้น ๆระหว่างขอบของแผ่นธรณีภาคที่ซ้อนเกยกันในบริเวณภาคพื้นทวีปหรือมหาสมุทร

 

 

1 2 3 16

เรื่อง นํ้า

แม้ว่าพื้นผิว 2 ใน 3 ส่วนของโลกปกคลุมไปด้วยน้ำ  แต่น้ำจืดที่สามารถนำมาใช้ในการดำรงชีวิตของมนุษย์กลับมีไม่ถึง 1%  ถ้าหากสมมติว่าน้ำในโลกทั้งหมดเท่ากับ 100 ลิตร จะมีน้ำทะเล 97 ลิตร  น้ำแข็งเกือบ 3 ลิตร  ส่วนน้ำจืดที่เราสามารถใช้บริโภคอุปโภคได้มีเพียง 3 มิลลิลิตร ดังภาพที่ 2  ด้วยเหตุนี้น้ำจึงเป็นทรัพยากรที่ล้ำค่า และขาดแคลนง่าย

ภาพที่ 2 เปรียบเทียบแหล่งน้ำบนโลก

        แม้ว่าปริมาณน้ำส่วนใหญ่จะอยู่ในทะเลและมหาสมุทร แต่น้ำก็มีอยู่ในทุกหนแห่งของโลก ไม่ว่าจะเป็นแม่น้ำ ลำคลอง น้ำใต้ดิน น้ำในบรรยากาศ รวมทั้งเมฆหมอกและหยาดน้ำฟ้า ดังข้อมูลในตารางที่ 1  นอกจากนั้นร่างกายมนุษย์มีองค์ประกอบเป็นน้ำร้อยละ 65  ร่างกายของสัตว์น้ำบางชนิด เช่น แมงกะพรุน มีองค์ประกอบเป็นน้ำร้อยละ 98  ดังนั้นจึงกล่าวได้ว่า น้ำคือปัจจัยที่สำคัญที่สุดของสิ่งมีชีวิต
ตารางที่ 1 แหล่งน้ำบนโลก
มหาสมุทร 97.2 % ทะเลสาบน้ำเค็ม 0.008 %
ธารน้ำแข็ง 2.15 % ความชื้นของดิน 0.005 %
น้ำใต้ดิน 0.62 % แม่น้ำ ลำธาร 0.00001 %
ทะเลสาบน้ำจืด 0.009 % บรรยากาศ 0.001 %

น้ำผิวดิน

แหล่งน้ำที่เรารู้จักและใช้ประโยชน์กันมากที่สุดคือ “น้ำผิวดิน” (Surface water)  น้ำผิวดินมีทั้งน้ำเค็มและน้ำจืด  แหล่งน้ำผิวดินที่เป็นน้ำจืดได้แก่ ทะเลสาบน้ำจืด แม่น้ำ ลำธาร ห้วย หนอง คลอง บึง  เนื่องจากภูมิประเทศของพื้นผิวโลกไม่ราบเรียบเสมอกัน พื้นผิวของโลกแต่ละแห่งมีความแข็งแรงทนทานไม่เหมือนกัน  แรงโน้มถ่วงทำให้น้ำไหลจากที่สูงลงที่ต่ำ น้ำมีสมบัติเป็นตัวทำละลายที่ดีจึงสามารถกัดเซาะพื้นผิวโลกให้เกิดการเปลี่ยนแปลงภูมิประเทศ

การกัดเซาะของน้ำอย่างต่อเนื่อง ทำให้ร่องน้ำเปลี่ยนแปลงขนาด รูปร่าง และทิศทางการไหล เมื่อฝนตก หยดน้ำจะรวมตัวกันแล้วไหลทำให้เกิดร่องน้ำ ร่องน้ำเล็กๆ ไหลมารวมกันเป็น “ธารน้ำ” (Stream)  เมื่อกระแสน้ำในธารน้ำไหลอย่างต่อเนื่องก็จะกัดเซาะพื้นผิวและพัดพาตะกอนขนาดต่างๆ ไปกับกระแสน้ำ ธารน้ำจึงมีขนาดใหญ่และยาวขึ้นจนกลายเป็น แม่น้ำ (River) ความเร็วของกระแสน้ำขึ้นอยู่กับความลาดชันของพื้นที่ ถ้าพื้นที่มีความลาดชันมากกระแสน้ำจะเคลื่อนที่เร็ว แต่ถ้าหากพื้นที่มีความลาดชันน้อยกระแสน้ำก็จะเคลื่อนที่ช้า  นอกจากนั้นความเร็วของกระแสน้ำยังขึ้นอยู่กับพื้นที่หน้าตัด เข่น เมื่อกระแสน้ำไหลผ่านช่องเขาแคบๆ ก็จะเคลื่อนที่เร็ว  เมื่อกระแสน้ำพบความที่ราบกว้างใหญ่ เช่น บึง หรือทะเลสาบ กระแสน้ำจะหยุดนิ่งทำให้ตะกอนที่น้ำพัดพามาก็จะตกทับถมใต้ท้องน้ำ ดังเราจะพบว่า อ่างเก็บน้ำเหนือเขื่อนที่มีอายุมากมักมีความตื้นเขินและเก็บกักน้ำได้น้อยลง  อย่างไรก็ตามปริมาณของน้ำผิวดินขึ้นอยู่กับลักษณะภูมิอากาศ ภูมิประเทศ ปริมาณน้ำฝน เนื้อดิน การใช้ประโยชน์ที่ดินและทรัพยากรน้ำ

ภาพที่ 3 ภาคตัดขวางของแม่น้ำ

น้ำใต้ดิน

หากไม่นับธารน้ำแข็งขั้วโลกแล้ว “น้ำบาดาล” (Ground water) เป็นแหล่งน้ำจืดที่มีปริมาณมากที่สุดบนโลกของเรา  น้ำบาดาลเกิดขึ้นจากการไหลซึมของน้ำผิวดิน  ในเนื้อดินมีรูพรุน (Pore) สำหรับอากาศและน้ำ เช่น ดินเหนียวมีรูพรุนขนาดเล็ก น้ำไหลผ่านได้ยาก  ดินทรายมีรูพรุนขนาดใหญ่ น้ำไหลผ่านได้ง่าย  เมื่อพื้นผิวดินเกิดความชื้นหรือมีฝนตก เม็ดดินจะเก็บน้ำไว้ในรูพรุนไว้จนกระทั่งดินอิ่มตัวด้วยน้ำ ไม่สามารถเก็บน้ำได้มากกว่านี้แล้ว น้ำส่วนหนึ่งจะไหลบ่าไปตามพื้นผิว (Run off) น้ำอีกส่วนหนึ่งจะไหลซึมลงสู่ชั้นดินเบื้องล่าง (Infiltration)  ใต้ชั้นดินลึกลงไปจะเป็นชั้นหินตะกอนเนื้อหยาบที่สามารถเก็บกักน้ำบาดาลไว้ได้เรียกว่า “ชั้นหินอุ้มน้ำ” (Aquifer)  ซึ่งเป็นหินทราย กรวด ตะกอนทราย จึงมีสมบัติยอมให้น้ำซึมผ่านโดยง่าย เนื่องจากช่องว่างขนาดใหญ่ระหว่างอนุภาคตะกอน จึงเก็บกักน้ำได้เป็นปริมาณมากจนกลายเป็นแหล่งน้ำบาดาล  ใต้ชั้นหินอุ้มน้ำลงไปเป็นชั้นหินตะกอนเนื้อละเอียด เช่น หินดินดานหรือทรายแป้งซึ่งไม่ยอมให้น้ำซึมผ่านได้  ในบางแห่งที่ชั้นหินอุ้มน้ำถูกขนาบด้วยชั้นหินเนื้อละเอียดก็จะเกิดแรงดันน้ำ ถ้าเราเจาะบ่อบาดาลลงไปตรงบริเวณดังกล่าง แรงดันภายในจะดันน้ำให้มีระดับสูงขึ้น หรือไหลล้นปากบ่อออกมา  และเนื่องจากชั้นหินมีความลาดเอียง น้ำในดินจึงไหลจากที่สูงไปสู่ที่ต่ำ แรงดันของน้ำใต้ดินจึงมักทำให้เกิด “น้ำพุ” (Spring) ในบริเวณที่ราบต่ำ ดังภาพที่ 4

ภาพที่ 4 ภาคตัดขวางของแหล่งน้ำใต้ดิน 

อย่างไรก็ตามน้ำบาดาลทำให้เกิดแรงดันภายใต้พื้นผิว ซึ่งช่วยรับน้ำหนักที่กดทับจากด้านบน แต่ถ้าหากเราสูบน้ำบาดาลขึ้นมาใช้เป็นปริมาณมาก เกินกว่าที่น้ำจากธรรมชาติจะไหลมาแทนที่ช่องว่างระหว่างอนุภาคตะกอนของชั้นหินอุ้มน้ำได้ทัน ก็จะส่งผลให้ระดับน้ำใต้ดินลดลงอย่างรวดเร็ว โพรงที่ว่างที่เกิดขึ้นจะทำให้แผ่นดินที่อยู่ด้านบนทรุดตัวลงมากลายเป็น หลุมยุบ (Sinkhole) ซึ่งถ้าเกิดขึ้นในเขตชุมชน ก็จะสร้างความเสียหายแก่สิ่งปลูกสร้าง และเกิดอันตรายต่อชีวิต

https://web.ku.ac.th/schoolnet/snet6/envi2/subraae/raae.htm

แร่เป็นทรัพยากรที่เกิดขึ้นเองตามธรรมชาติมีความสำคัญและมีบทบาทที่สนองความต้องการ ทางด้านปัจจัยต่าง ๆ ของประชากร ทั้งทางด้านอุตสาหกรรมและพลังงาน ความสำคัญและประโยชน์ของแร่ธาตุที่จะนำมาใช้ขึ้นอยู่กับระยะเวลาความเจริญทางเทคโนโลยี ตลอดจนความต้องการในการนำไปใช้ของมนุษย์ทรัพยากรแร่ธาตุ ที่มนุษย์เราใช้ส่วนใหญ่มาจากแผ่นดิน ซึ่งค่อย ๆ ลดจำนวนลงทำให้มีการสำรวจค้นคว้าหาแหล่งทรัพยากรแร่ธาตุใหม่ ๆ อยู่เสมอ ปัจจุบันได้มีการบุกเบิกหาแหล่งทรัพยากรแร่ธาตุในทะเล เช่น น้ำมันปิโตรเลียมและก๊าซธรรมชาติความเจริญก้าวหน้าทางเทคโนโลยี และระยะเวลาทำให้ความสำคัญของแร่ธาตุเปลี่ยนแปลงไปจากชนิดหนึ่งไปใช้อีกชนิดหนึ่ง เช่น จากการใช้ถ่านหินมาใช้น้ำมันปิโตรเลียมและก๊าซธรรมชาติจากการใช้เหล็กมาใช้อลูมิเนียมแทนประเภทของแร่แร่เป็นทรัพยากรที่มนุษย์ นำมาใช้ประโยชน์มากมาย แบ่งเป็น 3 ประเภท คือ1. แร่โลหะ เป็นแร่ที่มีความเหนียว เป็นตัวทนความร้อน และไฟฟ้าได้ดีหลอมตัวได้ และมีความทึบแสง ได้แก่ แร่ดีบุก เหล็ก แมงกานีส ทองแดง ตะกั่ว อลูมิเนียม แมกนีเซียม ทองคำ เงิน วุลแฟรม ฯลฯ2. แร่อโลหะ เป็นแร่ที่ไม่เป็นตัวนำความร้อนมีลักษณะโปร่งแสง เปราะแตกหักง่าย ได้แก่ ฟลูออไรท์ ฟอสเฟส หิน ทราย เกลือ กำมะถัน โปแตสเซียม แคลเซียม ดินขาว ฯลฯ3. แร่พลังงาน หรือแร่เชื้อเพลิงเป็นแร่ที่สำคัญถูกนำมาใช้มากเกิดจากซากสิ่งมีชีวิตในอดีต ได้แก่ ถ่านหิน น้ำมันดิบ ก๊าซธรรมชาติ

ประโยชน์แร่1. ประโยชน์ทางด้านความมั่นคง และมั่งคั่งของประเทศ ประเทศที่มีแร่ธาตุต่าง ๆ มากมายและสามารถนำไปใช้แปรรูปเป็นผลผลิตต่าง ๆ ที่ทำประโยชน์ต่อมนุษย์ เช่น ด้านอาวุธ ด้านอุตสาหกรรม2. ประโยชน์ด้านความเป็นอยู่ของมนุษย์นำแร่ธาตุต่าง ๆ มาสร้างขึ้นเป็นภาชนะใช้สอยพาหนะที่ช่วยในการคมนาคม อาคารบ้านเรือน ก๊าซหุงต้ม พลังงานไฟฟ้า3. ประโยชน์ด้านการสร้างงานแก่ประชาชน ทำให้ประชาชนมีรายได้จากการขุดแร่ ไปจนถึงแปรรูปเป็นผลิตภัณฑ์ไปสู่ผู้บริโภคนอกจากนี้ แร่ธาตุชนิดต่าง ๆ มีคุณสมบัติลักษณะต่างกัน จึงมีประโยชน์แตกต่างกัน เช่น แร่วุลแฟรม นำมาทำไส้หลอดไฟฟ้า ใช้ในอุตสาหกรรมเครื่องแก้ว แร่พลวงนำมาใช้ทำตัวพิมพ์หนังสือ ทำสี แบตเตอรี่ รัตนชาติ เป็นแร่ที่มีลักษณะสีสันสวยงาม นำมาใช้ทำเครื่องประดับต่าง ๆ มากมายปัญหาทรัพยากรแร่1. ปัญหาสิ่งแวดล้อมบริเวณที่ทำเหมืองแร่แล้วทำให้สภาพดินไม่อุดมสมบูรณ์ สกปรกพื้นที่ขรุขระมีหลุมบ่อมากมายจึงถูกปล่อยทิ้งใช้ประโยชน์ไม่เต็มที่2. ปัญหาการใช้แร่ธาตุบางประเภทเป็นจำนวนมาก เช่น แร่เหล็กถูกนำมาใช้มากและแพร่หลายที่สุด ถ่านหิน น้ำมันปิโตรเลียม ดีบุก ฯลฯ3. ปัญหาการใช้แร่ไม่คุ้มค่า ได้แก่ พวกแร่ที่ใช้แล้วยังเหลืออยู่ ยังสามารถนำกลับไปใช้อีก เช่น เหล็ก ส่วนแร่ที่นำไปใช้แล้วหมดไป เช่น ถ่านหิน น้ำมัน ปิโตรเลียม ก๊าซธรรมชาติ เราจึงต้องใช้อย่างคุ้มค่า และประหยัด

การทำเหมืองแร่

การอนุรักษ์แร่ธาตุดังได้กล่าวมาแล้วถึงทรัพยากรแร่ธาตุในปัจจุบันซึ่งกำลังประสบปัญหาหากไม่มีการป้องกันแก้ไข ดังนั้นการอนุรักษ์แร่ธาตุจึงเป็นมาตรการสำคัญที่จะช่วยได้ดังต่อไปนี้1. การใช้แร่ธาตุอย่างประหยัด ในการทำเหมืองแร่บางอย่างนั้นบางทีทรัพยากรแร่ธาตุที่ได้มาอาจมีหลายชนิด ดังนั้นจึงควรจะพยายามใช้ให้คุ้มค่าทุกชนิด อย่างประหยัดและลดการสูญเปล่า2. การสำรวจแหล่งแร่ ควรมีการเร่งรัดการสำรวจทรัพยากรแร่ธาตุให้ครอบคลุมทั่วประเทศเพื่อประโยชน์ในการวางแผนการใช้ประโยชน์อย่างคุ้มค่า3. การใช้แร่ชนิดอื่นทดแทน พยายามหาแร่ธาตุอื่น ๆ มาใช้ทดแทนแร่ที่ใช้กันมาก อาทิการใช้อลูมิเนียมแทนเหล็ก4. นำแร่ที่ใช้แล้วกลับมาใช้อีก เพื่อการใช้ประโยชน์อย่างเต็มที่ควรมีการนำแร่ที่ใช้แล้วกลับมาใช้อีก อาทิ ภาชนะเครื่องใช้ที่เป็นอลูมิเนียมบางอย่างที่หมดสภาพการใช้แล้วสามารถนำกลับมาหลอมใช้ใหม่ได้อีก


ที่มา : รวบรวมจาก กรมส่งเสริมคุณภาพสิ่งแวดล้อม กระทรวงวิทยาศาสตร์และเทคโนโลยีและสิ่งแวดล้อม