ผลที่เกิดขึ้นกับวัตถุเมื่อแรงลัพธ์ที่กระทำต่อวัตถุเท่ากับศูนย์

ที่มา : https://chainsorrowful.wordpress.com/แรงและการเคลื่อนที่/
แรงและการเคลื่อนที่

แรง (force) เป็นสิ่งที่ทำให้วัตถุเปลี่ยนรูปร่าง เปลี่ยนทิศทาง เกิดการเคลื่อนที่หรือหรือหยุดนิ่งได้ แรงสามารถเปลี่ยนความเร็วของวัตถุได้ หรือกล่าวได้ว่าแรงทำให้วัตถุเกิดความเร่ง

ถ้ามีแรงขนาดเท่ากันกระทำต่อวัตถุในทิศทางตรงกันข้าม อาจจะทำให้เกิดการเปลี่ยนแปลงรูปร่างและขนาดของวัตถุ แต่ไม่มีการเคลื่อนที่ของวัตถุ

ลักษณะของแรง แรงเป็นปริมาณเวกเตอร์ มีทั้งขนาดและทิศทาง มีหน่วยเป็นนิวตัน (N) ใช้สัญลักษณ์ Fเขียนแทนแรง การเขียนสัญลักษณ์ของแรงที่บอกทิศทางของแรงด้วยนั้น จะใช้ความยาวของเส้นตรงแทนขนาด และใช้หัวลูกศรแทนทิศทางของแรง เรียกว่า เวกเตอร์ของแรง

ใบความรู้ เรื่อง แรงแบบต่างๆ

แรงเคลื่อนที่และตำแหน่งของวัตถุ

การเคลื่อนที่ของวัตถุมีการเคลื่อนที่แบบต่างๆ เช่น การเคลื่อนที่ในแนวตรง แนวโค้ง และการเคลื่อนที่เป็นวงกลม ซึ่งในการเคลื่อนที่นั้นระบุว่า วัตถุอยู่ที่ใดต้องกำหนดจุดอ้างอิง ระยะทางและทิศที่วัตถุนั้นห่างจากจุดอ้างอิง ซึ่งเรียกว่า การกระจัด ซึ่งการกระจัดเป็นปริมาณเวกเตอร์ โดยปริมาณเวกเตอร์เป็นปริมาณที่มีทั้งขนาดและทิศทาง เขียนแทนด้วยลูกศร ความยาวของลูกศรแทนขนาด และหัวลูกศรแทนทิศทาง วัตถุที่กำลังเคลื่อนที่จะเคลื่อนที่เร็วหรือช้า พิจารณาจากระยะทางที่ได้หรือการกระจัดที่ได้เทียบกับเวลาที่ใช้ในการเคลื่อนที่

การเคลื่อนที่แบบต่างๆ มีลักษณะเฉพาะของการเคลื่อนที่

  • การเคลื่อนที่แนวเส้นตรง : วัตถุจะเคลื่อนที่ในแนวเดิม (ทิศเดิมหรือทิศตรงข้าม) โดยอาจมีแรงกระทำต่อวัตถุหรือไม่ก็ได้ ถ้ามีแรงกระทำ ทิศของแรงที่กระทำจะอยู่ในแนวเดียวกับแนวการเคลื่อนที่ของวัตถุเสมอ

  • การเคลื่อนที่แนวโค้ง : วัตถุจะมีการเคลื่อนที่ 2 แนวพร้อมๆ กัน เช่น เคลื่อนที่ในแนวราบและในแนวดิ่ง แรงที่กระทำต่อวัตถุจีทิศคงตัวตลอดเวลา โดยทำมุมใดๆ กับทิศของความเร็ว เช่น แรงดึงดูดของโลก

  • การเคลื่อนที่วงกลม : วัตถุเคลื่อนที่เป็นส่วนโค้งรอบจุดๆ หนึ่ง โดยมีแรงกระทำในทิศเข้าสู่ศูนย์กลาง

  • การเคลื่อนที่แบบฮาร์มอนิกอย่างง่าย : วัตถุจะเคลื่อนที่กลับไปมาซ้ำรอยเดิมโดยมีแอมพลิจูดคงตัว

แรงกับการเคลื่อนที่ของวัตถุ (แรงที่กระทำต่อวัตถุ)

การออกแรงกระทำต่อวัตถุอาจทำให้วัตถุเคลื่อนที่ได้ หรือวัตถุอาจไม่เคลื่อนที่ เนื่องจากมีแรงย่อยอื่นมาร่วมกระทำ ทำให้เกิดการหักล้างของแรงในปริมาณเวกเตอร์ ดังนั้นวัตถุที่จะเคลื่อนที่ได้หรือไม่ได้ก็ขึ้นอยู่กับแรงลัพธ์ที่มากระทำต่อวัตถุนั่นเอง

เมื่อออกแรงกระทำต่อวัตถุแล้ววัตถุไม่เคลื่อนที่ เนื่องจากถูกหักล้างด้วยแรงอื่นที่ร่วมกระทำต่อวัตถุนั้น แต่ไม่ว่าวัตถุนั้นจะเคลื่อนที่หรือไม่เคลื่อนที่ก็ตามจะเกิดแรงลัพธ์ของวัตถุเสมอ

แรงเป็นปริมาณที่มีขนาดและทิศทาง แรงจึงเป็นปริมาณเวกเตอร์ การรวมแรงต้องรวมแบบเวกเตอร์ ในการรวมแรงหลายๆ แรงที่กระทำต่อวัตถุ ถ้าผลรวมของแรงที่ได้เป็นศูนย์แสดงว่า วัตถุนั้นอยู่ในสภาพสมดุล เมื่อปล่อยวัตถุ วัตถุนั้นจะตกลงสู่พื้นดิน แสดงว่ามีแรงกระทำต่อวัตถุ ซึ่งแรงนั้นเกิดจากแรงดึงดูดที่โลกกระทำต่อวัตถุ หรือที่เรียกว่า แรงโน้มถ่วงของโลก หรือน้ำหนักของวัตถุนั่นเอง แรงโน้มถ่วงนี้จะมีค่ามากหรือน้อยขึ้นอยู่กับมวลของวัตถุ ในการลากวัตถุให้เคลื่อนที่ไปบนพื้นผิวจะมีแรงต้านการเคลื่อนที่ เรียกแรงนี้ว่า แรงเสียดทาน ซึ่งแรงเสียดทานจะมีค่ามากหรือน้อยขึ้นอยู่กับลักษณะผิวสัมผัสระหว่างวัตถุทั้งสองและแรงที่วัตถุกดพื้น กิจกรรมบางอย่างต้องการให้ผิวสัมผัสมีแรงเสียดทาน แต่กิจกรรมบางอย่างต้องการลดแรงเสียดทานระหว่างผิวสัมผัส

เมื่อออกแรงแล้วทำให้วัตถุเคลื่อนที่ไปตามแนวแรงนั้น เรียกว่า มีการทำงาน คำนวณหาค่าของงานที่ทำได้จากผลคูณของแรงและระยะทางในแนวเดียวกันกับแรง และกำหนดให้งานที่ทำได้ในหนึ่งหน่วยเวลา คือ กำลัง

ในบางกรณี เมื่อออกแรงกระทำต่อวัตถุอาจทำให้วัตถุหมุน เรียกว่าเกิดโมเมนต์ของแรง ซึ่งเกิดเมื่อแรงที่กระทำมีทิศตั้งฉากกับระยะทางจากจุดหมุนไปยังแนวแรง การหมุนนี้มีทั้งหมุนในทิศตามเข็มนาฬิกา และทวนเข็มนาฬิกา โดยถ้าผลรวมของโมเมนต์ตามเข็มนาฬิกาเท่ากับผลรวมของโมเมนต์ทวนเข็มนาฬิกา วัตถุจะอยู่ในสภาพสมดุล

เมื่อมีแรงกระทำต่อวัตถุทำให้วัตถุเคลื่อนที่สามารถวัดอัตราเร็วหรือขนาดของความเร็วของการเคลื่อนที่ได้จากการใช้เครื่องเคาะสัญญาณเวลา วัตถุที่เคลื่อนที่โดยมีความเร็วเปลี่ยนไป เรียกว่า วัตถุเคลื่อนที่โดยมีความเร่ง โดยความเร่งจะมีทิศเดียวกับทิศของแรงลัพธ์ที่กระทำต่อวัตถุ

การเคลื่อนที่ของวัตถุนอกจากจะเคลื่อนที่ในแนวตรงแล้ว ยังมีการเคลื่อนที่แบบอื่นอีก เช่น การเคลื่อนที่แบบโพรเจคไทล์ ซึ่งเป็นการเคลื่อนที่แนวโค้ง โดยได้ระยะทางในแนวราบและแนวดิ่งพร้อมๆ กัน การเคลื่อนที่ในแนววงกลม เป็นการเคลื่อนที่ที่มีแรงกระทำต่อวัตถุในทิศเข้าสู่ศูนย์กลาง

แรงชนิดต่าง

แรงลัพธ์ หรือแรงรวม หมายถึง ผลรวมของแรงย่อยแบบเวกเตอร์ของแรงทั้งหมดที่กระทำต่อวัตถุ ถ้าแรงลัพธ์มีค่าเป็นศูนย์ แสดงว่าวัตถุไม่มีการเคลื่อนที่อันเนื่องมาจากแรงที่มากระทำต่อวัตถุ

 

แรงย่อย หมายถึง แรงที่เป็นองค์ประกอบของแรงลัพธ์

การหาค่าแรงลัพธ์จากเวกเตอร์

  1. เมื่อแรงย่อยมีทิศทางเดียวกัน ให้นำแรงย่อยมารวมกัน สามารถเขียนเวกเตอร์แทนแรงได้ด้วยเส้นตรงและหัวลูกศร

     
  2. เมื่อแรงย่อยมีทิศทางตรงกันข้าม ให้นำค่าของแรงย่อยมาหักล้างกัน เวกเตอร์ของแรงลัพธ์จะมีทิศไปทางแรงที่มากกว่า ค่าของแรงลัพธ์เท่ากับผลต่างของแรงย่อยทั้งสอง

     
  3. ถ้าแรงย่อยเท่ากัน แต่มีทิศทางตรงข้าม จะได้แรงลัพธ์มีค่าเป็นศูนย์และไม่มีความเร่ง ดังนั้นวัตถุจะคงสภาพเดิม

     

การเขียนปริมาณเวกเตอร์ เขียนแทนด้วยเส้นตรงที่มีหัวลูกศรกำกับความยาวของเส้นตรงแทนขนาดของเวกเตอร์ และหัวลูกศรแทนทิศทางของเวกเตอร์ การเขียนสัญลักษณ์ของเวกเตอร์เขียนได้หลายแบบ เช่น เวกเตอร์ A สามารถเขียนสัญลักษณ์แทนเป็น หรือ a

การหาแรงรวมหรือแรงลัพธ์ด้วยการเขียนรูป

  1. ใช้เส้นตรงแทนขนาดของแรงและใช้ลูกศรแทนทิศของแรง

  2. เริ่มต้นด้วยแรงตัวที่ 1 แล้วนำแรงตัวที่ 2 มาชนโดยให้หางลูกศรของแรงตัวที่ 1 ชนกับหัวลูกศรของแรงตัวที่ 1 ต่อกันเช่นนี้เรื่อยไป

 

แรงโน้มถ่วงของโลก

จากกฏความโน้มถ่วงของนิวตัน แรงโน้มถ่วง (gravity) ของโลกที่กระทำกับวัตถุมวลใดๆ ในที่นี้จะศึกษาความสัมพันธ์ระหว่างมวลและน้ำหนักของมวล ว่า แรงสามารถทำให้วัตถุเปลี่ยนรูปร่างหรือเปลี่ยนสภาพการเคลื่อนที่ เช่น ถ้าปล่อยมือจากวัตถุที่ถือไว้ วัตถุจะเปลี่ยนแปลงสภาพการเคลื่อนที่ตกลงสู่พื้นเนื่องจากมีแรงดึงดูดของโลกที่กระทำต่อวัตถุ หรือที่เรียกว่า แรงโน้มถ่วงของโลก โดยแรงนี้จะมีค่ามากหรือน้อยนั้นขึ้นอยู่กับมวลของวัตถุนั้นๆ โดยวัตถุที่มีมวลมากก็จะมีน้ำหนักมาก วัตถุที่มีมวลน้อยก็จะมีน้ำหนักน้อย

ประโยชน์ที่ได้จากแรงโน้มถ่วงของโลก เช่น ทำให้วัตถุต่างๆ ไม่ลอยออกไปนอกโลก ทำให้น้ำไหลจากที่สูงลงสู่ที่ต่ำและใช้พลังงานของน้ำในการผลิตกระแสไฟฟ้า

มวล คือ ปริมาณเนื้อของสารซึ่งมีค่าคงตัว มีหน่วยเป็นกิโลกรัม

น้ำหนัก ของวัตถุบนโลก เกิดจากแรงดึงดูดระหว่างมวลของวัตถุและโลก

 

น้ำหนักของวัตถุชิ้นหนึ่งๆ เมื่อชั่งในปริมาณต่างกันจะมีค่าต่างกัน โดยน้ำหนักของมวล 1 กิโลกรัมที่บริเวณเส้นศูนย์สูตรมีค่าประมาณ 9.78 นิวตัน ในขณะที่น้ำหนักของมวล 1 กิโลกรัม ที่บริเวณขั้วโลกมีค่าประมาณ 9.83 นิวตัน

แรงเสียดทาน

แรงเสียดทาน (friction) หมายถึง แรงที่ต่อต้านการเคลื่อนที่ของวัตถุ แรงเสียดทานเกิดขึ้นระหว่างผิวสัมผัสของวัตถุกับผิวของพื้น เช่น เมื่อเราเข็นรถเข็นเด็ก

 

ปัจจัยที่มีผลต่อแรงเสียดทาน คือ

  1. น้ำหนักของวัตถุ วัตถุที่มีน้ำหนักกดทับลงบนพื้นผิวมากจะมีแรงเสียดทานมากกว่าวัตถุที่มีน้ำหนักกดทับลงบนพื้นผิวน้อย

  2. พื้นผิวสัมผัส ผิวสัมผัสที่เรียบจะเกิดแรงเสียดทานน้อยกว่าผิวสัมผัสที่ขรุขระจากนั้นน้องๆ ดูการทดลองเรื่องแรงต้านทานการเคลื่อนที่ของวัตถุ ดังนี้

 

จากสรุปจากผลการทดลอง ได้ว่า “แรงต้านการเคลื่อนที่ของวัตถุที่เกิดขึ้นบริเวณผิวสัมผัสของวัตถุทั้งสองขณะเคลื่อนที่ คือ แรงเสียดทาน”

นอกจากนี้ แรงเสียดทานจะมีค่าเปลี่ยนไปเมื่อลักษณะผิวสัมผัสระหว่างวัตถุเปลี่ยนไป โดยถ้าผิวสัมผัสเป็นผิวหยาบหรือขรุขระ แรงเสียดทานจะมีค่ามาก แต่ถ้าผิวสัมผัสเรียบหรือลื่น แรงเสียดทานจะมีค่าน้อย

ความต่างมวลของวัตถุกับแรงเสียดทาน

“แรงเสียดทานจะมีค่าเพิ่มขึ้น เมื่อจำนวนถุงทรายเพิ่มขึ้น เพราะเมื่อจำนวนถุงทรายเพิ่มขึ้น แรงที่ถุงทรายกดพื้นก็จะมากขึ้นด้วย แสดงว่า แรงเสียดทานระหว่างวัตถุคู่หนึ่งๆ จะมากขึ้นกับแรงที่วัตถุกดพื้นมีค่ามากขึ้น

ประเภทของแรงเสียดทาน

แรงเสียดทานแบ่งออกเป็น 2 ประเภท คือ

  • แรงเสียดทานสถิต (fs) เป็นแรงเสียดทานที่เกิดขึ้นในขณะที่วัตถุอยู่นิ่ง จนถึงเริ่มต้นเคลื่อนที่

  • แรงเสียดทานจลน์ (fk) เป็นแรงเสียดทานขณะวัตถุกำลังเคลื่อนที่ด้วยความเร็วคงตัว ซึ่งจะมีค่าน้อยกว่าแรงเสียดทานสถิต

ค่าสัมประสิทธิ์ของแรงเสียดทาน เป็นค่าตัวเลขที่แสดงว่าเกิดแรงเสียดทานขึ้นระหว่างผิวสัมผัสของวัตถุ 2 สิ่ง มากน้อยเพียงใด ใช้สัญลักษณ์แทนด้วยตัวอักษร µ (มิว)

สูตรการหาค่าสัมประสิทธิ์ของแรงเสียดทาน (µ) ดังนี้

 

ตัวอย่าง การหาค่าสัมประสิทธิ์ของแรงเสียดทาน

แรงเสียดทานมีทั้งประโยชน์และโทษ บางครั้งในชีวิตประจำวันเราก็ได้ประโยชน์จากแรงเสียดทาน การเกิดความฝืดช่วยในการเดินได้เร็วและไม่ลื่น เป็นต้น

ประโยชน์และโทษของแรงเสียดทาน

มนุษย์เรามีความรู้เกี่ยวกับแรงเสียดทานมาใช้ประโยชน์ เพื่ออำนวยความสะดวกในชีวิตประจำวัน ดังนี้

  1. ช่วยให้รถเคลื่อนที่ไปข้างหน้าได้ ยางรถจึงมีร่องยางช่วยเพิ่มประสิทธิภาพการยึดเกาะถนนที่เรียกว่า ดอกยาง

  2. ช่วยให้รถถอยหลังได้ ยางรถยนต์จึงมีลวดลายดอกยางเพื่อช่วยในการยึดเกาะถนน

  3. การเดินบนพื้นต้องอาศัยแรงเสียดทาน จึงควรใช้รองเท้าที่มีพื้นเป็นยางและมีลวดลายขรุขระ ไม่ควรใช้รองเท้าแบบพื้นเรียบ แรงเสียดทานน้อยจะทำให้ลื่น

  4. นักวิ่งเร็วที่ใช้รองเท้าพื้นตะปู เพื่อเพิ่มแรงเสียดทาน ทำให้มีแรงยึดเกาะกับพื้นผิวลู่วิ่งช่วยให้วิ่งได้เร็วขึ้น

โทษของแรงเสียดทาน

แรงเสียดทานทำให้สิ้นเปลืองพลังงานและทำให้เกิดการสึกหรอของอุปกรณ์ต่างๆ ในเครื่องจักร ดังนั้นการหาวิธีลดแรงเสียดทาน เพื่อรักษาประสิทธิภาพในการทำงานของเครื่องจักรกลทั้งหลาย คือ

 

โมเมนต์

โมเมนต์ (moment) เป็นความสามารถของแรงในการหมุนวัตถุรอบจุดหมุน ขนาดของโมเมนต์หาได้จาก แรงคูณกับระยะทางตั้งฉากจากจุดที่แรงกระทำไปยังจุดหมุน

 

เมื่อมีแรงภายนอกมากระทำต่อวัตถุ โดยแนวแรงไม่ผ่านจุดศูนย์กลางมวล วัตถุนั้นจะหมุนรอบๆ จุดศูนย์กลางมวล ผลของการเกิดขึ้นเรียกว่า โมเมนต์

เช่น การปั่นจักรยาน การเปิดฝาขวด การเปิดประตู เป็นต้น

 

โมเมนต์ เป็นผลคูณของแรงกับระยะทางในแนวตั้งฉากจากจุดที่แรงกระทำไปยังจุดหมุนหน่วยของโมเมนต์ คือ

  • นิวตัน.เมตร (N.m)

ชนิดของโมเมนต์จำแนกตามลักษณะของการหมุน คือ

 

กฎของโมเมนต์

เมื่อวัตถุหนึ่งถูกกระทำด้วยแรงหลายแรง ซึ่งแรงกระทำนั้นๆ ทำให้วัตถุอยู่ในภาวะสมดุล (ไม่เคลื่อนที่และไม่หมุน) พบว่า

ผลรวมของโมเมนต์ทวนเข็มนาฬิกา = ผลรวมของโมเมนต์ตามเข็มนาฬิกา

 

การนำหลักโมเมนต์ไปใช้ประโยชน์กับเครื่องกลประเภทคาน และได้แบ่งตามตำแหน่งของจุดหมุน แรงพยายาม และแรงต้านทานเป็น 3 อันดับ คือ

  • จุดหมุนอยู่ระหว่างแรงพยายามและแรงต้าน (คานอันดับ 1)

  • แรงต้านทานอยู่ระหว่างจุดหมุนและแรงพยายาม (คานอันดับ 2)

  • แรงพยายามอยู่ระหว่างแรงต้านทานและจุดหมุน (คานอันดับ 3)

 

จากนั้นน้องๆ ดูสิ่งที่ประดิษฐ์ขึ้น เพื่อใช้ในการผ่อนแรงเหล่านี้ เช่น คาน ชะแลง กรรไกร เป็นต้น ว่าเป็นสิ่งประดิษฐ์ที่ใช้หลักเรื่องโมเมนต์และคานมาใช้ประโยชน์ในชีวิตประจำวันโดยการนำมาใช้เพื่อช่วยในการผ่อนแรง และทำให้ทำงานได้สะดวกยิ่งขึ้น

 

จากหลักของโมเมนต์น้องๆ จะสังเกตได้ว่า ถึงแม้จะมีแรงที่ต่างกันมากระทำต่อคานทั้ง 2 ข้างของจุดหมุน แต่ก็ยังสามารถปรับคานให้สมดุลได้ โดยอาศัยหลักของความสัมพันธ์ระหว่างแรงที่กระทำกับระยะจากจุดที่แรงกระทำถึงจุดหมุน ซึ่งสามารถนำหลักการนี้ไปใช้ผ่อนแรงในการยกวัตถุที่มีน้ำหนักมากได้

ที่มาข้อมูล : คู่มือครูสาระการเรียนรู้พื้นฐาน กลุ่มสาระการเรียนรู้วิทยาศาสตร์ ชั้นมัธยมศึกษาปีที่ 1 (สสวท) กระทรวงศึกษาธิการ
วัชพงษ์ โกมุทธรรมวิบูลย์ และคณะ แผนการจัดการเรียนรู้กลุ่มสาระการเรียนรู้วิทยาศาสตร์ ชั้นมัธยมศึกษปีที่ 1 ภาคเรียนที่ 1
ประดับ นาคแก้ว และคณะ หนังสือเรียนสาระการเรียนรู้พื้นฐาน กลุ่มสาระการเรียนรู้วิทยาศาสตร์ ช่วงชั้นที่ 3 ชั้นมัธยมศึกษาปีที่ 1(หนังสือเรียนมาตรฐาน

กระบวนการเปลี่ยนแปลงทางธรณีวิทยาบนเปลือกโลก

ที่มา : http://www.nakhamwit.ac.th/pingpong_web/Earth_Struction.htm

กระบวนการเปลี่ยนแปลงทางธรณีวิทยาบนเปลือกโลก

โลกและการเปลี่ยนแปลง

การแบ่งโครงสร้างภายในของโลก

โครงสร้างภายในของโลก สามารถสรุปเป็นชั้นต่างๆ สำคัญ ดังนี้

  • เปลือกโลก คือ ส่วนที่อยู่ชั้นนอกสุดของโลก มีทั้งส่วนที่เป็นแผ่นดินและน้ำที่มองเห็นอยู่ภายนอกกับส่วนที่เป็นหินแข็งฝังลึกลงไป ใต้ผิวดินและผิวน้ำ เปลือกโลกนี้มีความหนาประมาณ 6- 35 กิโลเมตร
  • แมนเทิล คือ ส่วนที่อยู่ถัดลงไปจากเปลือกโลกหนาประมาณ 2,900 กิโลเมตร บางส่วนของชั้นนี้มีหินเหลวหนืดและร้อนจัดประกอบด้วยธาตุต่างๆ เช่น ซิลิคอน เหล็ก อะลูมิเนียม หลอม ละลายปนกันอยู่ภายใต้ความดันและอุณหภูมิสูงมาก
  • แก่นชั้นนอก คือ ส่วนที่อยู่ชั้นในของโลก มีความหนาประมาณ 2,250 กิโลเมตร ในชั้นนี้ประกอบด้วยเหล็กและนิเกิล โดยแก่นโลกชั้นนอกเป็นสารหลอมเหลว
  • แก่นชั้นใน คือ ส่วนที่อยู่ชั้นในสุดของโลก มีความหนาประมาณ 1,230 กิโลเมตร ในชั้นนี้จะอยู่ลึกมาก จึงมีความกดดันและมีอุณหภูมิสูงทำให้อนุภาคของเหล็กและนิเกิลถูกอัดแน่นจนเป็นของแข็ง

กล่องข้อความ:    Y  ภาพสรุปการแบ่งโครงสร้างภายในของโลก

แผ่นเปลือกโลก

เปลือกโลกมีแผ่นหลายแผ่นเรียงชิดติดกันเรียกว่า เพลต (Plate) ซึ่งมีอยู่ประมาณ 20 เพลต เพลตที่มีขนาดใหญ่ ได้แก่ เพลตแปซิฟิก เพลตอเมริกาเหนือ เพลตอเมริกาใต้ เพลตยูเรเซีย เพลตแอฟริกา เพลตอินโดออสเตรเลีย และเพลตแอนตาร์กติก เป็นต้น เพลตทุกเพลตเคลื่อนตัวเปลี่ยนแปลงขนาดและรูปร่างอยู่ตลอดเวลา ดังภาพ


กล่องข้อความ: --- รอยต่อของแผ่นเปลือกโลก  è ทิศทางที่แผ่นเปลือกโลกเคลื่อนที่  p  แนวเทือกเขา

แผนภาพแสดง แผ่นเปลือกโลก

ทวีปในอดีต

เมื่อมองดูแผนที่โลก หากเราตัดส่วนที่เป็นพื้นมหาสมุทรออก จะพบว่าส่วนโค้งของขอบแต่ละทวีปนั้น โค้งรับกันราวกับนำมาเลื่อนต่อกันได้เสมือนเกมส์ต่อแผนภาพ (Jigsaw) นักธรณีวิทยาพบว่า ตามบริเวณแนวรอยต่อของเพลตต่างๆ มักเป็นที่ตั้งของเทือกเขาสูงและภูเขาไฟ ทั้งบนทวีปและใต้มหาสมุทร การศึกษาการเคลื่อนที่ของเปลือกโลกด้วยทฤษฎีเพลตเทคโทนิคส์ ประกอบกับร่องรอยทางธรณีวิทยาในอดีตพบว่า เมื่อ 200 ล้านปีก่อน ทุกทวีปอยู่ชิดติดกันเป็นแผ่นดินขนาดใหญ่ เรียกว่า แพนเจีย (Pangaea) โดยมีดินแดนทางตอนเหนือชื่อ ลอเรเซีย (Lawresia) และดินแดนทางใต้ชื่อ กอนด์วานา (Gonwana) ซึ่งแบ่งแยกด้วยทะเลเททิส

สี่เหลี่ยมมุมมน: ในปี ค.ศ. 1915  อัลฟรด เวเกเนอร์  นักวิทยาศาสตร์ชาวเยอรมัน  ได้เสนอแนวคิดเกี่ยวกับอดีตโลก  เป็นที่น่าสังเกตว่า  ทวีปอเมริกาใต้กับทวีปแอฟริกาคล้ายกับเป็นชิ้นจิ๊กซอว์สองชิ้น  เขาคิดว่าครั้งหนึ่งทวีปทั้งสองเคยอยู่ติดกัน จนเมื่อเวลาผ่านไปหลายล้านปี มันจึงเคลื่อนที่และแยกออกจากกัน  เขาพบว่าชนิดของหินระหว่างทวีปอเมริกาใต้กับทวีปแอฟริกานั้นเป็นชนิดเดียวกัน รวมถึงพบฟอสซิลของเมโซเซรัส (สัตว์เลื้อยคลานโบราณชนิดหนึ่ง)  แต่เขาไม่สามารถอธิบายได้ว่าทวีปมีการเคลื่อนที่อย่างไร

 

ภาพแสดง ทวีปในอดีตที่ ทุกทวีปอยู่ชิดติดกันเป็นแผ่นดินขนาดใหญ่

การเกิดแผ่นดินไหว

ความร้อนจากแก่นโลกนอกจากจะทำให้แผ่นเปลือกโลกเคลื่อนที่ได้แล้ว ยังทำให้เปลือกโลกส่วนล่างขยายตัวได้มากกว่าผิวด้านบน ทั้งนี้เพราะผิวโลกมีอุณหภูมิต่ำกว่าแก่นโลกมาก นอกจากนี้บริเวณผิวโลกยังมีการเปลี่ยนแปลงอุณหภูมิอยู่ตลอดเวลา สาเหตุดังกล่าวนี้ทำให้เปลือกโลกมีการขยายตัวและหดตัวไม่สม่ำเสมอ อิทธิพลนี้จะส่งผลกระทบต่อรอยแตกในชั้นหินและรอยต่อระหว่างแผ่นเปลือกโลกโดยตรง คือรอยต่อระหว่างแผ่นเปลือกโลกบางแห่งอาจแยกห่างออก บางแห่งเคลื่อนที่เข้าชนกัน การชนกันหรือแยกออกจากกันของเปลือกโลกอาจทำให้เปลือกโลกบางส่วนในบริเวณนั้นเกิดการเปลี่ยนแปลงโดยฉับพลัน เช่น เปลือกโลกเกิดการทรุดตัวหรือยุบตัวลง ทำให้เปลือกโลกบริเวณนนั้นเกิดการกระทบกระเทือนหือเคลื่อนที่ตามแนวระดับและจะส่งอิทธิพลของการกระทบกระแทกหรือการเคลื่อนที่ตามแนวระดับนี้ออกไปยังบริเวณรอบๆ ในรูปของคลื่น เราเรียกการเปลี่ยนแปลงเปลือกโลกที่เกิดขึ้น ในลักษณะนี้ว่า แผ่นดินไหว จากการศึกษาของนักธรณีวิทยาพบว่า บริเวณรอยต่อระหว่างแผ่นเปลือกโลกนั้นมีโอกาสเกิดแผ่นดินไหวมากกว่าบริเวณอื่นๆ ทั้งนี้เพราะแผ่นเปลือกโลกเคลื่อนที่อยู่ตลอดเวลา บริเวณรอยต่อจึงมีโอกาสเกิดการกระทบกระแทกได้ง่ายและถ้าการกระทบกระแทกเกิดขึ้นอย่างรุนแรงจนเป็นเหตุให้เปลือกโลกบริเวณนนั้นฉีกขาดตามแนวระดับหรือทรุดตัวลงอย่างรวดเร็วด้วยอิทธิพลของแรงดึงดูดของโลก ก็อาจทำให้อาคาร บ้านเรือนและสิ่งก่อสร้างต่างๆ พังทลายและได้รับความเสียหายได้

ภูเขาไฟ

หินหนืดที่อยู่ใต้เปลือกโลกนั้นมีอุณหภูมิและความดันสูงมาก หินหนืดจะถูกแรงดันอัดให้แทรกรอยแตกขึ้นสู่ผิวโลกโดยมีแรงปะทุหรือแรงระเบิดเกิดขึ้น เรียกว่าการเกิดภูเขาไฟ แรงอัดที่ถูกปล่อยออกมาจะบ่งบอกถึงความรุนแรงของการระเบิดของภูเขาไฟ หินหนืดที่พุ่งขึ้นมาจากการระเบิดของภูเขาไฟนี้เรียกว่า ลาวาซึ่งจะไหลลงสู่บริเวณที่อยู่ระดับต่ำกว่าและสร้างความเสียหายให้แก่มนุษย์สิ่งมีชีวิตและสิ่งแวดล้อมเป็นอย่างมากนอกจากหินหนืดที่พุ่งออกมาจากปล่องภูเขาไฟแล้วยังมีสิ่งอื่นปะปนออกมาอีกมากมายมีทั้งไอน้ำฝุ่นละอองเศษหินและก๊าซต่างๆเช่นก๊าซคาร์บอนไดออกไซด์แก็สไนโตรเจนเป็นต้น
นอกจากนี้นักธรณีวิทยาสังเกตพบว่าก่อนที่ภูเขาไฟจะระเบิดมักมีแผ่นดินไหวเกิดขึ้นก่อน  ทั้งนี้เพราะเปลือกโลกบริเวณนั้นอาจมีจุดอ่อน เช่น อาจมีรอยแตกหรือรอยแยกของชั้นหิน ร่องรอยเหล่านี้เมื่อได้รับแรงดันจากหินหนืดชั้นหินบริเวณนั้นจึงเคลื่อนได้ และภายหลังจากที่ภูเขาไฟ ระเบิดแล้วก็จะมีแผ่นดินไหวเกิดขึ้นเช่นเดียวกัน ซึ่งเกิดจากการปรับตัวระหว่างหินหนืดกับชั้นหินบริเวณข้างเคียง
แนวรอยต่อระหว่างแผ่นเปลือกโลกจะเป็นบริเวณที่มีโอกาสเกิดภูเขาไฟระเบิดมากกว่าบริเวณที่อยู่ถัดเข้าไปภายในแผ่นทวีปทั้งนี้เพราะบริเวณรอยต่อนี้จะมีขอบทวีปส่วนหนึ่งมุดจมลงไปใต้แผ่นเปลือกโลกอีกแผ่นหนึ่ง ส่วนที่มุดลงไปนี้จะหลอมเหลวเป็นหินหนืด มีอุณหภูมิและแรงดันสูงมาก จึงดันแทรกตัวขึ้นมาตามรอยแยกได้ง่ายกว่าบริเวณอื่น

การเปลี่ยนแปลงของเปลือกโลก

แผ่นเปลือกโลกมีการเคลื่อนที่อยู่ตลอดเวลา และแบ่งการเคลื่อนที่ของแผ่นโลกออกเป็น 3 แบบคือการชนกัน การแยกจากกัน และแบบรอยเลื่อน ซึ่งมีผลทำให้เกิดกระบวนการทางธรณีวิทยาดังนี้

1. การคดโค้งโก่งงอ

การคดโค้งโก่งงอ เกิดจากแผ่นเปลือกโลก 2 แผ่น เคลื่อนที่ชนกันด้วยแรงดันมหาศาลทำให้ชั้นหินตรงบริเวณที่แผ่นเปลือกโลกชนกันเกิดการคดโค้งโก่งงอ แต่การเกิดรอยคดโค้งโก่งงอจะใช้เวลาเป็นพันปีและต้องได้รับพลังงานอย่างต่อเนื่อง รอยคดโค้ดโก่งงอของชั้นหินเกิดติดต่อกันเป็นบริเวณกว้างกินพื้นที่มากจะกลายเป็นเทือกเขา เช่น เทือกเขาหิมาลัยในทวีปเอเซีย เทือกเขาแอลป์ในทวีปยุโรป เทือกเขาภูพานในภาคตะวันออกเฉียงเหนือของประเทศไทย เป็นต้น

2. การยกตัวและการยุบตัว

การยกตัวและการยุบตัว เกิดจากพลังงานที่สะสมอยู่ภายในเปลือกโลก จะเริ่มแตกและแยกออกจากกันในทิศทางที่เป็นเส้นตรงหรือแนวราบ ทำให้เกิดรอยเลื่อนในลักษณะต่าง ๆ เช่น การยกตัวของแผ่นเปลือกโลกที่เกิดจากรอยเลื่อนแบบปกติเป็นภูเขา เรียกว่า Block Mountain โดยยอดเขาจะมีลักษณะราบและไหล่เขาชันมาก เช่น ภูกระดึง จังหวัดเลย และอีกแบบคือ การยุบตัวของแผ่นเปลือกโลก กลายเป็นแอ่งหรือหุบเขา เรียกว่า Rift valleys ซึ่งเกิดจากรอยเลื่อนแบบย้อน

3. การผุพังอยู่กับที่

การผุพังอยู่กับที่เป็นกระบวนการที่ทำให้วัสดุสลายออกเป็นชิ้นเล็กๆ โดยมีการเปลี่ยนแปลงขนาดและองค์ประกอบเคมีของอนุภาคที่สลายตัว ปัจจัยทำให้เกิดการผุพังอยู่กับที่ มีดังนี้

  • ปัจจัยทางกายภาพ เกิดจากน้ำที่แทรกตัวเข้าไปอยู่ในชั้นหินที่มีรอยแยกหรือรอยแตกเมื่อุณหภูมิมีการเปลี่ยนแปลง เช่น ในเวลากลางคืนอากาศเย็นจัด น้ำจะกลายเป็นน้ำแข็งมีปริมาณเพิ่มขึ้น ดันรอยแยกให้ขยายตัวมากขึ้น ทำให้ชั้นหินที่อยู่ด้านล่างแตก และเมื่อถึงตอนกลางวันน้ำแข็งละลาย น้ำนะแทรกไปตามรอยแตกใหม่ จะเกิดเป็นวัฏจักรอย่างนี้ไปเรื่อย ๆ จนในที่สุดเกิดการผุพังเกิดขึ้น
  • ปัจจัยทางเคมี เกิดจากน้ำฝนที่เป็นปัจจัยสำคัญ โดยการเกิดกระบวนการปฏิกิริยาไฮโดรไลซิส ปฏิกิริยาออกซิเดชัน และปฏิกิริยาคาร์บอเนชัน ที่เป็นสาเหตุของการผุพัง
  • ปัจจัยชีวภาพ เกิดจากพืชเป็นตัวกลางที่ทำให้ชั้นหินเกิดการผุพัง เช่น รากพืชที่ไปชอนไชไปในรอยแตกของหิน เมื่อพืชโตขึ้นรากพืชจะทำให้หินแตกเป็นชั้น ๆ

4. การกร่อน

การกร่อน เป็นการพังทลายของชั้นหินเนื่องจากลม ฝน แม่น้ำ ลำธาร ธารน้ำแข็ง คลื่น เป็นต้น

5. การพัดพาและทับถม

ดิน หิน เมื่อเกิดการกัดกร่อน จะถูกน้ำหรือลมพัดไปสู่ที่ต่ำกว่า เกิดการทับถมเป็นลักษณะต่างๆ เช่น แม่น้ำเจ้าพระยา เกิดจากการพัดพาตะกอนไปทับถมที่ปากน้ำ เกิดเป็นดินดอนปากแม่น้ำ เป็นต้น

กล่องข้อความ: นอกจากนี้  มนุษย์เป็นตัวการที่ทำให้หินผุพังหรือแตกสลายไปอย่างรวดเร็วมากกว่าตัวการอื่นๆ ได้แก่  1.	การค้นหาขุดดิน หิน และแร่ธาตุ ซึ่งมีอยู่ในเปลือกโลก  2.	การก่อสร้างสิ่งก่อสร้างขนาดใหญ่ เช่น เขื่อน อาคาร โรงงานขนาดใหญ่  3.	การระเบิดภูเขา การทำเหมืองแร่ การขุดเจาะเชื้อเพลิง การขุดเจาะบาดาล  4.	การตัดไม้ทำลายป่า  5.    การทดลองระเบิดปรมาณูและการสร้างโรงไฟฟ้านิวเคลียร์

ขนานและทิศทางของแรง

ที่มา : https://sites.google.com/site/tukbenz/ray-laxeiyd-neuxha/khwam-hmay-khxng-khnad-laea-thisthang-khxng-raeng

ขนานและทิศทางของแรง

ความหมายของแรง

แรง หมายถึง อำนาจภายนอกที่สามารถทำให้วัตถุเปลี่ยนสถานะได้ เช่นทำให้วัตถุที่อยู่นิ่งเคลื่อนที่ไป ทำให้วัตถุที่เคลื่อนที่อยู่แล้วเคลื่อนที่เร็วหรือช้าลง ทำให้วัตถุมีการเปลี่ยนทิศตลอดจนทำให้วัตถุมีการเปลี่ยนขนาดหรือรูปทรงไปจากเดิมได้แรงเป็นปริมาณเวกเตอร์ ที่มีทั้งขนาดและทิศทางการรวมหรือหักล้างกันของแรงจึงต้องเป็นไปตามแบบเวกเตอร์

เวกเตอร์ของแรง

ปริมาณบางปริมาณที่ใช้กันอยู่ในชีวิตประจำวันบอกเฉพาะขนาดเพียงอย่างเดียวก็ได้ความหมายสมบูรณ์แล้ว แต่บางปริมาณจะต้องบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ ปริมาณในทางฟิสิกส์แบ่งออกเป็น 2 ประเภท คือ

1. ปริมาณสเกลาร์ (scalar quantity) คือ ปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายที่สมบูรณ์ โดยไม่ต้องบอกทิศทาง เช่น เวลา ระยะทาง มวล พลังงาน งาน ปริมาตร ฯลฯ ในการหาผลลัพธ์ของปริมาณสเกลาร์ทำได้โดยอาศัยหลักทางพีชคณิต คือ ใช้วิธีการบวก ลบ คูณ หาร

2. ปริมาณเวกเตอร์ (vector quantity) คือ ปริมาณที่ต้องการบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ เช่น ความเร็ว ความเร่ง การกระจัด โมเมนตัม แรง ฯลฯ

ลักษณะที่สำคัญของปริมาณเวกเตอร์

1. สัญลักษณ์ของปริมาณเวกเตอร์ การแสดงขนาดและทิศทางของปริมาณเวกเตอร์จะใช้ลูกศรแทน โดยขนาดของปริมาณเวกเตอร์แทนด้วยความยาวของลูกศรและทิศทางของปริมาณเวกเตอร์แทนด้วยทิศทางของหัวลูกศร สัญลักษณ์ของปริมาณเวกเตอร์ ใช้ตัวอักษรมีลูกศรครึ่งบนชี้จากซ้ายไปขวาแสดงปริมาณเวกเตอร์ ดังรูป

จากรูป เวกเตอร์ A มีขนาด 4 หน่วย ไปทางทิศตะวันออก

เวกเตอร์ B มีขนาด 3 หน่วย ไปทางทิศใต้

2. เวกเตอร์ที่เท่ากัน เวกเตอร์ 2 เวกเตอร์จะเท่ากันก็ต่อเมื่อมีขนาดเท่ากันและทิศทางไปทางเดียวกัน ดังรูป

จากรูป เวกเตอร์ A เท่ากับ เวกเตอร์ B เขียนเป็นสัญลักษณ์

เวกเตอร์ C เท่ากับ เวกเตอร์ D เขียนเป็นสัญลักษณ์

3. เวกเตอร์ตรงข้ามกัน เวกเตอร์ 2 เวกเตอร์จะตรงข้ามกันก็ต่อเมื่อ เวกเตอร์ทั้งสองมีขนาดเท่ากัน แต่มีทิศทางตรงข้ามกัน ดังรูป

จากรูป เวกเตอร์ A ตรงข้ามกับเวกเตอร์ B เขียนเป็นสัญลักษณ์ ได้ว่า

เวกเตอร์ C ตรงข้ามกับเวกเตอร์ D เขียนเป็นสัญลักษณ์ ได้ว่า

ข้อควรทราบ ในการหาผลลัพธ์ของปริมาณเวกเตอร์ ทำได้โดยอาศัยวิธีการทางเวกเตอร์ ซึ่งต้องหาผลลัพธ์ทั้งขนาดและทิศทาง การหาผลลัพธ์ของแรงหลายแรง การรวมแรงซึ่งมีหลายแรงเพื่อจะหาแรงลัพธ์เพียงแรงเดียว นิยมใช้สัญลักษณ์ เรียกว่า

แทน เพื่อรวมผลบวกที่มีแรงหลายๆ ค่า เช่น

กระทำพร้อม ๆ กันที่จุดเดียว ดังนี้

การรวมแรง คือ การหาค่าแรงลัพธ์ () ของแรงย่อยทั้งหมด มีวิธีการหาเหมือนกันกับเวกเตอร์ลัพธ์ เพราะแรงเป็นปริมาณเวกเตอร์ ซึ่งอาจสรุปวิธีการหาแรงลัพธ์ได้ดังนี้

1. โดยวิธีการวาดรูปแบบหางต่อหัว การหาแรงลัพธ์ด้วยวิธีการนี้ทำได้โดยนำหางของแรงที่สองไปต่อกับหัวลูกศรของแรงแรกและนำหางของแรงที่สามไปต่อกับหัวของแรงที่สอง ทำเช่นนี้ไปเรื่อยๆ จนครบทุกแรง แรงลัพธ์ที่ได้ คือ แรงที่ลากจากหางของแรงแรกไปยังหัวของแรงสุดท้าย ดังรูป

2. โดยวิธีการคำนวณ ใช้หาแรงลัพธ์ของแรงย่อยที่มี 2 แรง

1) แรงสองแรงไปในทางเดียวกัน แรงลัพธ์มีขนาดเท่ากับผลบวกของแรงทั้งสอง ส่วนทิศทางของแรงลัพธ์ไปทิศทางเดียวกับแรงทั้งสอง ดังรูป

ผลของแรงลัพธ์ต่อการเคลื่อนที่ของวัตถุ

วัตถุต่างๆ เมื่อมีแรงมากระทำ วัตถุจะมีการเปลี่ยนแปลงสภาพเดิมใน 3 ลักษณะ คือ

1. มีการเปลี่ยนแปลงตำแหน่ง

2. มีการเปลี่ยนแปลงความเร็ว

3. มีการเปลี่ยนแปลงรูปร่างและขนาด

เมื่อแรงที่กระทบต่อวัตถุแตกต่างกัน ย่อมทำให้ผลของการเปลี่ยนแปลงแตกต่างกันไปด้วย ถ้าแรงที่กระทำมีค่ามาก การเปลี่ยนแปลงซึ่งเป็นผลของแรงนั้นย่อมมีการเปลี่ยนแปลงมากด้วย

ในชีวิตประจำวัน การที่วัตถุมีการเปลี่ยนแปลงต่างๆ จะเกิดจากอิทธิพลของแรง แรงที่พบตามธรรมชาติมีอยู่มากมายหลายชนิด ซึ่งก็มีผลต่อการเปลี่ยนแปลงของวัตถุได้แตกต่างกัน

ข้อควรทราบ

– แรงที่กระทำไปในทิศทางเดียวกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วเพิ่มขึ้น

– แรงที่กระทำไปในทิศทางตรงข้ามกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วลดลง

การเคลื่อนที่

กฎการเคลื่อนที่ของนิวตัน

เซอร์ไอแซก นิวตัน (Sir Issac Newton) นักฟิสิกส์ ชาวอังกฤษ ได้สรุปเกี่ยวกับการเคลื่อนที่ของวัตถุทั้งที่อยู่ในสภาพอยู่นิ่งและในสภาพเคลื่อนที่เป็นกฎการเคลื่อนที่ของนิวตัน ซึ่งสามารถทำให้เราเข้าใจการเคลื่อนที่ต่างๆ ได้ทั้งหมด กฎของนิวตันมี 3 ข้อ ได้แก่

1. กฎการเคลื่อนที่ข้อที่หนึ่งของนิวตัน หรืออาจเรียกว่า กฎแห่งความเฉื่อย (inertia law) กล่าวว่า “วัตถุจะคงสภาพอยู่นิ่ง หรือสภาพเคลื่อนที่ด้วยความเร็วคงตัวในแนวตรง นอกจากจะมีแรงลัพธ์ซึ่งมีค่าไม่เป็นศูนย์มากระทำ” หรือสรุปเป็นสมการ ดังนี้

จากกฎการเคลื่อนที่ข้อที่ 1 ของนิวตันอธิบายได้ว่า ถ้ามีวัตถุวางนิ่งอยู่บนพื้นราบแล้วไม่มีแรงใดมากระทำต่อวัตถุ วัตถุก็ยังคงอยู่นิ่งเช่นเดิมต่อไป หรือถ้ามีแรงสองแรงมากระทำต่อวัตถุโดยแรงทั้งสองมีขนาดเท่ากันแต่ทิศทางตรงข้ามกันจะพบว่า วัตถุยังคงหยุดนิ่งเช่นเดิม จึงสรุปได้ว่า “วัตถุที่อยู่นิ่งถ้าไม่มีแรงภายนอก อื่นใดมากระทำต่อวัตถุหรือมีแรงภายนอกหลายแรงมากระทำต่อวัตถุ แต่แรงลัพธ์เหล่านั้นเป็นศูนย์แล้ววัตถุนั้นยังคงรักษาสภาพนิ่งไว้อย่างเดิม” ดังรูป

หรือถ้าพิจารณาวัตถุที่กำลังเคลื่อนที่บนพื้นระดับราบลื่นซึ่งไม่มีแรงภายนอกใดมากระทำต่อวัตถุ วัตถุก็จะรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวค่าหนึ่ง หรือถ้าให้แรงสองแรงมากระทำต่อวัตถุขณะวัตถุกำลังเคลื่อนที่ โดยแรงทั้งสองมีขนาดเท่ากันแต่มีทิศทางตรงข้ามกัน จะพบว่า วัตถุยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นต่อไป จึงสรุปได้ว่า ” วัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่งถ้าไม่มีแรงภายนอกมากระทำต่อวัตถุ หรือถ้ามีแรงภายนอกหลายแรงมากระทำต่อวัตถุแต่แรงลัพธ์ของแรงเหล่านั้นเป็นศูนย์แล้ว วัตถุนั้นยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นตลอดไป” ดังรูป

จากที่กล่าวมาแล้วข้างต้นสามารถสรุปได้ว่า “ถ้าแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์วัตถุจะไม่เปลี่ยนสภาพการเคลื่อนที่กล่าวคือ ถ้าเดิมวัตถุอยู่นิ่งก็จะอยู่นิ่งตลอดไปแต่ถ้าเดิมวัตถุกำลังเคลื่อนที่อยู่ด้วยความเร็วค่าหนึ่งวัตถุนั้นก็จะยังคงเคลื่อนที่ต่อไปในแนวตรงตามทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป”

2. กฎการเคลื่อนที่ข้อที่สองของนิวตัน หรืออาจเรียกว่า กฎแห่งความเร่ง ถ้ามวลของวัตถุคงตัวแต่เปลี่ยนขนาดของแรง (F) ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะมากขึ้นด้วยจึงสรุปได้ว่า ขนาดของความเร่งแปรผันตรงกับขนาดของแรงลัพธ์ที่กระทำต่อวัตถุ เมื่อมวลคงตัวเขียนเป็นสัญลักษณ์ได้ว่า

และถ้าแรงลัพธ์ (F) ที่กระทำต่อวัตถุคงตัว แต่ถ้าเปลี่ยนมวล (m)ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะลดลง จึงสรุปได้ว่า ขนาดของความเร่งแปรผกผันกับมวลของวัตถุ เขียนเป็นสัญลักษณ์ได้ว่า

จากข้างต้นสรุปได้ว่า ความเร่ง (a) เป็นสัดส่วนโดยตรงกับแรง (F) ดังนั้นอัตราส่วนของแรงกับความเร่งจะเป็นค่าคงที่ซึ่งตรงกับมวล (m) ของวัตถุ เขียนเป็นความสัมพันธ์จะได้

ดังนั้น จึงสรุปเป็นกฎข้อที่สองของนิวตัน ได้ว่า “เมื่อมีแรงลัพธ์ซึ่งมีขนาดไม่เป็นศูนย์มากระทำต่อวัตถุ จะทำให้วัตถุเกิดความเร่งในทิศเดียวกับแรงลัพธ์ที่มากระทำ และขนาดของความเร่งจะแปรผันตรงกับขนาดของแรงลัพธ์และจะแปรผกผันกับมวลของวัตถุ”

ตัวอย่างที่ 1 ถ้าออกแรง 8 นิวตัน กระทำกับวัตถุมวล 32 กิโลกรัม วัตถุจะมีความเร่งเท่าใด

 

ตัวอย่างที่ 2 มวล 10 กิโลกรัม ต้องการให้เคลื่อนที่ด้วยความเร่ง 6 เมตรต่อวินาทีกำลังสอง จะต้องออกแรงกระทำเท่าใด

3. กฎการเคลื่อนที่ข้อที่สามของนิวตัน จากกฎการเคลื่อนที่ข้อที่หนึ่งและสองของนิวตันจะอธิบายสภาพการเคลื่อนที่ของวัตถุเมื่อมีแรงภายนอกมากระทำต่อวัตถุ ซึ่งจากการศึกษาในขณะที่มีแรงมากระทำต่อวัตถุ วัตถุจะออกแรงโต้ตอบต่อแรงที่มากระทำนั้นด้วย เช่น เมื่อเราออกแรงดึงเครื่องชั่งสปริง เราจะรู้สึกว่าเครื่องชั่งสปริงก็ดึงมือเราด้วยและยิ่งเราออกแรงดึงเครื่องชั่งสปริงด้วยแรงมากขึ้นเท่าใดเราก็จะรู้สึกว่าเครื่องชั่งสปริงยิ่งดึงมือเราไปมากขึ้นเท่านั้น ดังรูป

จากตัวอย่างจะพบว่า เมื่อมีแรงกระทำต่อวัตถุหนึ่ง วัตถุนั้นก็จะออกแรงโต้ตอบในทิศทางตรงข้ามกับแรงที่มากระทำ ซึ่งแรงทั้งสองแรงนี้จะเกิดขึ้นพร้อมกันเสมอ เราเรียกแรงที่มากระทำต่อวัตถุว่า “แรงกิริยา” (action force) และเรียกแรงที่วัตถุโต้ตอบต่อแรงที่มากระทำว่า “แรงปฏิกิริยา” (reaction force) แรงทั้งสองนี้จึงเรียกรวมกันว่า “แรงกิริยา-แรงปฏิกิริยา” (action-reaction) จึงสรุปความสัมพันธ์ระหว่างแรงกิริยากับแรงปฏิกิริยาได้เป็นกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน ได้ว่า “แรงกิริยาทุกแรงต้องมีแรงปฏิกิริยาซึ่งมีขนาดเท่ากันและทิศทางตรงข้ามกันเสมอ”หรือ action = reaction หมายความว่า เมื่อมีแรงกิริยากระทำต่อวัตถุใดก็จะมีแรงปฏิกิริยาจากวัตถุนั้นโดยมีขนาดแรงเท่ากันแต่กระทำกับวัตถุคนละก้อนเสมอ จึงนำแรงกิริยามาหักล้างกับแรงปฏิกิริยาไม่ได้ เช่น กรณีรถชนสุนัข แรงกิริยา คือ แรงที่รถชนสุนัข จึงทำให้สุนัขกระเด็นไป ในขณะเดียวกันจะมีแรงปฏิกิริยา ซึ่งเป็นแรงที่สุนัขชนรถ จึงทำให้รถบุบ จะเห็นว่าเสียหายทั้ง 2 ฝ่าย แสดงว่าแรงไม่หักล้างกัน ดังรูป

ข้อควรจำ ลักษณะสำคัญของแรงกิริยาแรงปฏิกิริยา

1. จะเกิดขึ้นพร้อมๆกันเสมอ

2. มีขนาดเท่ากัน

3. มีทิศทางตรงข้ามกัน

4. กระทำต่อวัตถุคนละก้อน

แรงที่กระทำต่อวัตถุ

ที่มา : https://sciencem1.wikispaces.com/แรงที่กระทำต่อวัตถุ

แรง

การทำกิจกรรมต่างๆ ในชีวิตประจำวันของเรานั้น จำเป็นต้องมีแรงเข้ามาเกี่ยวข้องเกือบตลอดเวลา ไม่ว่าจะเป็นการเรียนหนังสือ เล่นกีฬา ทำงานบ้าน หรือกิจกรรมใดๆก็ตามแรงมีผลทำให้วัตถุเกิดการเปลี่ยนแปลง อาจมีขนาด รูปร่างเปลี่ยนไป หรือเปลี่ยนแปลงสภาพการเคลื่อนที่ ซึ่งขึ้นอยู่กับขนาดและทิศทางของแรงที่มากระทำต่อวัตถุ โดยแรงที่มากระทำต่อวัตถุอาจเป็นแรงเดียวหรือหลายแรง ในกรณที่มีหลายแรงจะต้องหาผลรวมของแรงทั้งหมด เรียกว่า แรงลัพธ์
ความหมายของแรง
แรง คือ ปริมาณที่กระทำต่อวัตถุอาจทำให้วัตถุเกิดการเปลี่ยนแปลงทางกายภาพต่างๆซึ่งเป็นการถ่ายเทพลังงานจากตัวเราหรือจากแหล่งกำเนิดพลังงานไปยังวัตถุสิ่งของ เป็นผลทำให้วัตถุเกิดการเปลี่ยนแปลงใน 4 ลักษณะ คือ 1. วัตถุที่หยุดนิ่งอาจเริ่มเคลื่อนที่ได้
2. ความเร็วของวัตถุที่กำลังเคลื่อนที่อาจเปลี่ยนแปลงได้
3. ทิศทางการเคลื่อนที่ของวัตถุอาจเปลี่ยนแปลงได้
4. วัตถุอาจมีขนาดและรูปร่างเปลี่ยนแปลงไปจากเดิม

แรงลัพธ์

ในกรณีที่มีแรงกระทำกับวัตถุ 2 แรงขึ้นไป ไม่ว่าจะเป็นแรงจากทิศทางเดียวกันหรือทิศทางตรงกันข้าม หรือแรงหลายทิศทางพร้อมๆกัน เพื่อให้ง่ายต่อการอธิบายการเปลี่ยนแปลงต่างๆของวัตถุ จึงจำเป็นต้องหาผลรวมของขนาดและทิศทางของแรงทั้งหมด หรือแรงลัพธ์สำหรับการอธิบายการเปลี่ยนแปลงนั้น ซึ่งการหาแรงลัพธ์ในระนาบเดียวกนสามารถหาได้ ดังนี้

  1. การหาแรงลัพธ์ของแรงที่กระทำต่อวัตถุในทิศทางเดียวกัน

F = F1 + F2 เมื่อ F1 = แรงย่อที่ 1
F2 = แรงย่อที่ 2
F = แรงลัพธ์

  1. การหาแรงลัพธ์ของแรงที่กระทำต่อวัตถุในทิศทางตรงกันข้าม
  2. F = F1 – F2 เมื่อ F1 = แรงย่อที่ 1

F2 = แรงย่อที่ 2
F = แรงลัพธ์
ในกรณีที่แรงลัพธ์กระทำกับวัตถุเป็นศูนย์ วัตถุจะรักษาสภาพการเคลื่อนที่เดิมเอาไว้ ซึ่งสามารถแบ่งได้ 2 กรณีดังนี้

  1. แรงลัพธ์มีค่าเป็นศูนย์กระทำกับวัตถุหยุดนิ่ง วัตถุจะรักษาสภาพการหยุดนิ่งเอา หรือ ไม่เปลี่ยนแปลงสภาพการเคลื่อนที่ กล่าวได้ว่า วัตถุอยู่ในสภาพสมดุล
  2. แรงลัพธ์มีค่าเป็นศูนย์กระทำกับวัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่ง วัตถุจะรักษาสภาพการเคลื่อนที่เดิมเอาไว้และจะเคลื่อนที่ไปในทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป

แรงที่กระทำต่อวัตถุ

 

ปฏิกิริยาเคมีต่อสิ่งมีชีวิตและสิ่งแวดล้อม

ที่มา : https://sites.google.com/site/lamaiyodpho/bth-thi-1-sar-laea-kar-peliyn-plng/5-phl-ptikiriya-khemi-tx-chiwit-laea-sing-waedlxm
ที่มา : https://sites.google.com/site/carefullpattara/hnwy-thi-1/1-5-phl-ptikiriya-khemi-tx-chiwit-laea-sing-waedlxm

ปฏิกิริยาเคมีในชีวิตประจำวัน

        รอบๆตัวเราและในร่างกายเรามีปฏิกิริยาเคมีเกิดขึ้นอยู่ตลอดเวลาปฏิกิริยาเคมีเกิดจากกระบวนการเปลี่ยนแปลงโครงสร้างของสารต่างๆ มีผลให้พลังงานของระบบเปลี่ยนไปและให้ผลิตภัณฑ์หรือสารใหม่เกิดขึ้นปฏิกิริยาเคมีบางชนิดเกิดขึ้นเอง แต่บางชนิดต้องได้รับพลังงานจำนวนหนึ่งก่อนจึงจะเกิดปฏิกิริยาได้

         ปฏิกิริยาเคมีหลายชนิดสามารถนำมาใช้ประโยชน์ในชีวิตประจำวัน อุตสาหกรรม เกษตรกรรมและทางการแพทย์ในขณะเดียวกันปฏิกิริยาบางชนิดก็ให้ผลลบต่อสิ่งแวดล้อมและชีวิตของมนุษย์เองปฏิกิริยาเคมีแต่ละชนิดมีอัตราการเกิดปฏิกิริยาที่แตกต่างกัน ขึ้นอยู่กับปัจจัยหลัก 5 ประการ ได้แก่ ความเข้มข้น พื้นที่ผิว อุณหภูมิ ตัวเร่งปฏิกิริยา และธรรมชาติของสาร ผลของปัจจัยดังกล่าวสามารถหาได้จากการทดลอง

           การที่มนุษย์สามารถปรับเปลี่ยนและควบคุมปัจจัยต่างๆ ดังกล่าวได้ ทำให้มนุษย์สามารถใช้ประโยชน์จากปฏิกิริยาได้อย่างกว้างขวาง สารต่างๆในโลก รวมทั้งสิ่งของเครื่องใช้ต่าง ๆล้วนแต่เป็นผลผลิตที่เกิดจากการทำปฏิกิริยาเคมีของสารที่มีอยู่บนพื้นโลกเกือบทั้งสิ้น เมื่อเราทราบวิธีการเกิดปฏิกิริยาเคมีแล้ว  เราก็สามารถนำความรู้มาใช้ในการสร้างผลิตภัณฑ์ต่างๆ และป้องกันการเกิดปฏิกิริยาเคมีที่ไม่ต้องการกับสิ่งต่างๆในชีวิตประจำวันเพื่อรักษาสภาพของสิ่งนั้นให้สามารถใช้งานได้นานขึ้น

การเกิดปฏิกิริยาเคมีบางปฏิกิริยาทำให้เกิดผลิตภัณฑ์ที่ก่อให้เกิดปัญหาด้านสิ่งแวดล้อม ซึ่งมีผลกระทบต่อสิ่งแวดล้อมดังนี้

1. เกิดปรากฏการณ์เรือนกระจก เกิดจากก๊าซคาร์บอนไดออกไซด์ คลอโรฟลูออโรคาร์บอน และมีเทนที่เกิดขึ้นในปริมาณมาก เนื่องจากการกิจกรรมอันหลากหลายของมนุษย์ เมื่อได้รับพลังงานจากดวงอาทิตย์ รังสีอัลตราไวโอเลต (UV) จากดวงอาทิตย์มีพลังงานสูงทะลุผ่านชั้นก๊าซเรือนกระจก เมื่อผิวโลกร้อนขึ้นจะคายพลังงานความร้อนในรูปของรังสีอินฟาเรด ซึ่งมีพลังงานต่ำไม่สามารถทะลุผ่านชั้นก๊าซเรือนกระจกออกไปได้ ทำให้อุณหภูมิของโลกสูงขึ้น คาดว่าอีกประมาณ 100 ปีข้างหน้าอุณหภูมิของโลกจะสูงขึ้น 1- 5 องศาเซลเซียส ส่วนใหญ่ก๊าซที่ทำให้เกิดชั้นเรือนกระจก ได้แก่ ก๊าซคาร์บอนไดออกไซด์(CO2เกิดปรากฎการณ์เรือนกระจกได้ถึง 57 เปอร์เซ็นต์ ซึ่งเกิดจากการเผาไหม้เชื้อเพลิงเป็นส่วนใหญ่ ดังสมการ

    สารเชื้อเพลิง + ก๊าซออกซิเจน + ก๊าซคาร์บอนไดออกไซด์ + ไอน้ำ

ปริมาณก๊าซคาร์บอนไดออกไซด์ที่เพิ่มขึ้นเกิดจากกิจกรรมต่าง ๆ ดังนี้

1. โรงงานอุตสาหกรรม

2. การเผาไหม้เชื้อเพลิงจากยานพาหนะ

3. การตัดไม้ทำลายป่า การเผาป่า

แนวทางในการป้องกัน

1. ควบคุมเครื่องยนต์ในยาพาหนะให้มีสภาพดี และเลือกใช้น้ำมันเชื้อเพลิงคุณภาพดี ลดปริมาณการใช้เชื้อเพลิงฟอสซิล

2. แก้ไขปัญหาจราจรหนาแน่น

3. ปฏิบัติตามกฎหมายเกี่ยวกับเรื่องควบคุมปริมาณควันไอเสียของโรงงาน และยานพาหนะสู่บรรยากาศ

4. ไม่ตัดไม้ทำลายป่า เผาป่า และเผาฟางข้าวในนา

5. กำจัดขยะให้ถูกวิธี หลีกเลี่ยงการเผาขยะ

2. ก๊าซโอโซนถูกทำลาย การที่ก๊าซโอโซนถูกทำลายทำให้บรรยากาศของโลกมีอุณหภูมิสูงขึ้น

    สาเหตุ เกิดจากก๊าซคลอโรฟลูออโรคาร์บอน (CFC) ที่มนุษย์สังเคราะห์ขึ้นใช้ในการผลิตทางอุตสาหกรรม เช่น เครื่องทำความเย็นทั้งหลาย ใช้ในการผลิตโฟม สารขับดันในกระป๋องสเปรย์ เป็นต้น โดยไปทำลายโอโซน (O3ที่ช่วยดูดกลืนรังสีอัลตราไวโอเลตซึ่งเป็นรังสีที่มองไม่เห็น

    ผลกระทบ เกิดรูโหว่ของบรรยากาศชั้นโอโซน ทำให้รังสีอัลตราไวโอเลตผ่านบรรยากาศของโลกได้มากขึ้น ซึ่งเป็นอันตรายต่อมนุษย์ ถ้ามนุษย์ได้รับรังสีอัลตราไวโอเลตมากเกินไปจะทำให้เกิดโรคมะเร็งผิวหนัง ต้อกระจก ทำลายสิ่งมีชีวิตขนาดเล็ก ผลผลิตลดลง สารพันธุกรรมและเนื้อเยื่อถูกทำลาย เป็นต้น

    แนวทางในการป้องกัน

1. ใช้ก๊าซมีเทนและก๊าซเพนเทนในการผลิตโฟมแทนก๊าซคลอโรฟลูออโรคาร์บอน

2. เปลี่ยนสารขับดันในกระป๋องสเปรย์จากก๊าซคลอฟลูออโรคาร์บอนเป็นน้ำหรือสารอื่นแทน

3. ก๊าซคาร์บอนมอนนอกไซด์ (CO) เกิดจากการเผาไหม้ไม่สมบูรณ์ของเชื้อเพลิง เช่น การเผาไหม้ในที่อับอากาศ เป็นต้น ส่วนใหญ่มาจากท่อไอเสียรถยนต์

    ผลกระทบ ก๊าซคาร์บอนมอนอกไซด์เข้าไปขัดขวางการทำงานของเม็ดเลือดแดง ซึ่งทำหน้าที่ลำเลียงก๊าซออกซิเจน (O2การรวมตัวของเม็ดเลือดแดง (Hb) กับก๊าซคาร์บอนมอนอกไซด์ทำให้ปริมาณก๊าซออกซิเจนที่ถูกนำไปใช้ลดลง ถ้าร่างกายได้รับก๊าซคาร์บอนมอนอกไซด์มากอาจเป็นอันตรายถึงชีวิต

    แนวทางในการป้องกัน

1. ปรับปรุงคุณภาพและประสิทธิภาพของเครื่องยนต์ในยานพาหนะให้เกิดการเผาไหม้ที่สมบูรณ์

2. ป้องกันปัญหาการเกิดจราจรหนาแน่นและรถติด

3. ปรับปรุงระบบขนส่งมวลชนและรถไฟ ให้เพียงพอในการให้บริการประชาชน เพื่อลดการใช้รถยนต์ส่วนบุคคล

4. ฝนกรด เกิดจากน้ำฝนในธรรมชาติเป็นตัวทำละลายก๊าซซัลเฟอร์ไดออกไซด์ (SO2และก๊าซไนโตรเจนไดออกไซด์ (NO2เกิดเป็นสารละลายที่มีสมบัติเป็นกรด

สิ่งที่ทำให้เกิดปฏิกิริยาระหว่างซัลเฟอร์ไดออกไซด์และไนโตรเจนไดออกไซด์ เช่น เกิดจากการระเบิดภูเขา การเผาไหม้ที่ไม่สมบูรณ์ การเผาไหม้ถ่านหิน เชื้อเพลิงที่มีกำมะถัน ฟ้าแลบฟ้าผ่า เป็นต้น

    ผลกระทบ ฝนกรดจะเกิดอันตรายต่อระบบทางเดินหายใจและเนื้อเยื่อต่าง ๆ ของร่างกาย ทำให้พืชเจริญเติบโตช้า ถ้าเกิดเป็นปริมาณมากหรือได้รับเป็นเวลานาน พืชอาจตายได้ นอกจากนี้สิ่งก่อสร้างที่เป็นโลหะและหินอ่อนจะถูกทำลาย

    แนวทางในการป้องกัน

1. ควบคุมการปล่อยควันจากโรงงานอุตสาหกรรมและโรงไฟฟ้าให้มีการจำกัดก๊าซซัลเฟอร์ไดออไซด์และก๊าซไนโตรเจนไดออกไซด์ก่อนกำจัดออกสู่บรรยากาศ

2. ควบคุมเครื่องจักรกลของโรงงานอุตสาหกรรมให้มีการเผาไหม้ที่สมบูรณ์ และเลือกใช้เชื้อเพลิงที่มีคุณภาพ

3. ใช้พลังงานทดแทนจากธรรมชาติ เช่น พลังงานแสงอาทิตย์ พลังงานน้ำไหลแทนการเผาไหม้เชื้อเพลิงประเภทฟอสซิล เป็นต้น

5. อันตรายจากการใช้ธาตุกัมมันตรังสี กิดการรั่วไหลของรังสีที่นำมาใช้ในกิจกรรมต่าง ๆ เช่น โรงไฟฟ้านิวเคลียร์ ใช้ทางการแพทย์ ทางอุตสาหกรรม ทางการเกษตร เป็นต้น ถ้าไม่ระมัดระวังอาจเกิดการรั่วไหลของรังสีและเกิดเป็นอันตราย เนื่องจากรังสีสามารถทำลายเซลล์ ทำให้เซลล์ตายและอาจสูญเสียอวัยวะหรือชีวิตได้

    แนวทางในการป้องกัน

1. ต้องตรวจสอบสภาพของที่เก็บรังสีให้อยู่ในสภาพปลอดภัย

2. ให้ความรู้เกี่ยวกับสัญลักษณ์ของสารกัมมันตรังสี และห้าไม่ให้บุคคลเข้าใกล้บริเวณที่มีรังสีมาก

การใช้สารเคมี

 

การใช้สารเคมีอย่างถูกต้องและปลอดภัย

ในชีวิตประจำวันจะต้องเกี่ยวข้องกับสารต่าง ๆ มากมาย เนื่องจากสิ่งต่าง ๆ ที่อยู่รอบตัวเราจัดเป็นสารประกอบทั้งสิ้น เมื่อนำมาใช้ประโยชน์อาจจะทำให้เกิดผลกระทบ ซึ่งเป็นอันตรายต่อสิ่งมีชีวิตและสิ่งแวดล้อมได้ถ้าใช้ไม่ถูกต้อง ใช้ในปริมาณมากเกินไป ใช้แล้วไม่จัดเก็บให้เหมาะสม หรือไม่มีความรู้เกี่ยวกับสารนั้น เพื่อให้การใช้สารเคมีอย่างถูกต้องและปลอดภัยควรปฏิบัติดังนี้

1. ผู้ใช้ควรมีความรู้เกี่ยวกับสมบัติของสารที่จะใช้ วิธีใช้และจัดเก็บรักษา เช่น สารที่เป็นยาฆ่าแมลงหรือสารประเภทสเปรย์ควรเก็บไว้ในที่ห่างไกลจากความร้อน เนื่องจากอาจระเบิดได้ และควรเก็บไว้ในที่ที่เด็กหยิบไม่ถึง

2. ก่อนใช้สารเคมีทุกชนิดต้องอ่านฉลากเพื่อทำความเข้าใจเกี่ยวกับวิธีใช้สาร

3. ไม่ควรใช้สารเคมีมากเกินไปและไม่ทิ้งสารเคมีในที่สารธารณะหรือกองขยะ ควรแยกทิ้ง โดยใส่ถุงสีน้ำเงิน ซึ่งเจ้าหน้าที่จะเก็บไปทำลายได้ถูกต้อง และถ้ามีปริมาณมากต้องแจ้งเจ้าหน้าที่เทศบาลหรือสุขาภิบาลให้นำไปทำลาย

4. ควรรู้จักสัญลักษณ์เกี่ยวกับสารที่เป็นอันตราย เพื่อหลีกเลี่ยงจากอันตราย เช่น

หมายถึง ระวังอันตรายจากสารกัมมันตรังสี ควรหลีกเลี่ยง
หมายถึง วัตถุมีพิษห้ามรับประทาน
หมายถึง ระวังวัสดุไว้ไฟ ห้าเข้าใกล้เปลวไฟ
หมายถึง ระวังอันตรายจากเชื้อโรค
หมายถึง ระวังสารกัดกร่อน เช่น กรด เบส

5. ถ้ามีการกลืนสารพิษประเภทยาฆ่าแมลงให้ดื่มนมสดหรือกินไข่ดิบ เพื่อทำให้เกิดการตกตะกอนของสารพิษและอาเจียน หลังจากนั้นจึงนำส่งโรงพยาบาล

6. ถ้าถูกสารเคมีให้รีบล้างน้ำสะอาดทันที

7. ไม่ควรกำจัดขยะประเภทพลาสติกโดยการเผา เนื่องจากเกิดไอเป็นพิษ

8. สารประเภทโลหะเมื่อใช้แล้วควรเช็ดให้แห้ง เพื่อป้องกันการเกิดสนิม

ปัจจัยที่มีผลต่อการเกิดปฏิกิริยา

ที่มา : https://sites.google.com/site/akadahtwongrat/2-sar-laea-smbati-khxng-sar/05
ที่มา : https://saranya05618.wordpress.com/ปัจจัยการเกิดปฏิกิริยา/
ที่มา : http://www.mmv.ac.th/CHEM/rootsite/sub_05.html

ปัจจัยที่มีผลต่อการเกิดปฏิกิริยาเคมี

ปฏิกิริยาเคมีที่เกิดขึ้นนั้นบางปฏิกิริยาเกิดขึ้นเร็ว บางปฏิกิริยาเกิดขึ้นชา ซึ่งขึ้นอยูกับปจจัย ดังต่อไปนี้

1.สมบัติของสารตั้งต้น

สารแต่ละชนิดมีสมบัติต่างกัน จึงมีความว่องไวต่อการเกิดปฏิกิริยาต่างกันด้วย เช่น แมกนีเซียมสามารถทำปฏิกิริยากับสารละลายกรดและเกิดเป็นแก๊สไฮโดรเจนได้อย่างรวดเร็ว แต่แมกนีเซียมจะทำปฏิกิริยากับออกซิเจนได้ช้า หรือโลหะโซเดียมทำปฏิกิริยากับน้ำเย็นได้เร็วมาก ขณะที่โลหะแมกนีเซียมจะทำปฏิกิริยากับน้ำเย็นได้ช้า แต่จะเกิดเร็วขึ้นเมื่อทำปฏิกิริยากับน้ำร้อน เป็นต้น

2. ความเข้มข้นของสารตั้งต้น

ปฏิกิริยาโดยส่วนมากจะเกิดได้เร็วมากขึ้น ถ้าหากเราใช้สารตั้งต้นมีความเข้มข้นมากขึ้น เนื่องจากการเพิ่มความเข้มข้นของสารจะทำใหมีอนุภาคของสารอยู่รวมกันอย่างหนา แน่นมากขึ้น อนุภาคของสารจึงมีโอกาสชนกันแล้วเกิดปฏิกิริยาได้มากขึ้น

3. พื้นที่ผิวของสารตั้งต้น (Surface area)
จากการทดลองพบว่าอัตราการเกิดปฏิกิริยาเคมีเป็นสัดส่วนโดยตรงกับพื้นที่ผิวของสารตั้งต้น คือเมื่อเพิ่มพื้นที่ผิวของสารตั้งต้นอัตราการเกิดปฏิกิริยาเคมีจะเพิ่มขึ้น อธิบายได้ว่า เมื่อสารตั้งต้นมีพื้นที่ผิวมากมีผลให้อนุภาคของสารมีโอกาสเข้าชนกันได้มาก จึงเกิดปฏิกิริยาเร็วขึ้น การเพิ่มพื้นที่ทำได้หลายวิธี เช่น ทำให้สารมีขนาดเล็กลงคือตัดให้เป็น
ชิ้นเล็กๆ หรือบดเป็นผงละเอียด ยิ่งทำให้สารมีขนาดเล็กมากเท่า
ใด(มวลคงที่) จะยิ่งเพิ่มพื้นที่ผิวให้มากขึ้น

4. อุณหภูมิ หรือ พลังงานความร้อนจะมีผลต่อพลังงานภายในสาร โดยการเพิ่มอุณหภูมิจะเป็นการเพิ่มพลังงานจลน์ให้แก่อนุภาคของสารทำให้ อนุภาคของสารเคลื่อนที่ได้เร็วขึ้น จึงช่วยเพิ่มโอกาสในการชนกันของอนุภาคมากขึ้น นอกจากนี้การเพิ่มพลังงานให้แก่สารจะช่วยทำให้สารมีพลังงานภายในมากกว่าค่า พลังงานก่อกัมมันต์จึงทำให้เกิดปฏิกิริยาเร็วขึ้นได้ เช่น การเก็บอาหารในตู้เย็นเพื่อป้องการการเน่าเสีย เป็นต้น

5.ตัวเร่งปฏิกิริยา

ตัวเร่งปฏิกิริยา คือสารที่เติมลงไปในปฏิกิริยาแล้ว ทำให้เกิดปฏิกิริยาเกิดได้เร็วขึ้น โดยที่ตัวเร่งปฏิกิริยาอาจจะมีส่วนร่วมในการเกิดปฏิกิริยาหรือไม่ก็ได้ แต่เมื่อสิ้นสุดปฏิกิริยาตัวเร่งปฏิกิริยาเหล่านี้ยังคงมีปริมาณเท่าเดิมและมีสมบัติเหมือนเดิม โดยตัวเร่งปฏิกิริยาที่พบ เช่น เอนไซม์อะไมเลสในน้ำลายที่ช่วยย่อยแป้ง เอนไซม์เพปซินในกระเพาะอาหารที่ช่วยย่อยโปรตีน เอนไซม์ไซเมสที่ใช้ในกระบวนการหมักน้ำตาลกลูโคสด้วยยีสต์ให้กลายเป็นเอทานอลและแก๊สคาร์บอนไดออกไซด์

6. ตัวหน่วงปฏิกิริยา
ตัวหน่วงปฏิกิริยา คือสารที่ทำหน้าที่ตรงกันข้ามกับตัวเร่งปฏิกิริยา คือเมื่อเติมลงไปแล้วจะทำให้ปฏิกิริยาเกิดช้าลง การหน่วงปฏิกิริยาของตัวหน่วงปฏิกิริยาทำได้
หลายลักษณะ เช่น มีส่วนร่วมในการเกิดปฏิกิริยา และเปลี่ยนไปเป็นสารใหม่ หรืออาจจะไปขัดขวางการทำหน้าที่ของตัวเร่งปฏิกิริยาเป็นต้น

มวล พลังงาน กับการเกิดปฏิกิริยาเคมี

ที่มา : http://www.thaigoodview.com/node/87461

 

พลังงานกับการเกิดปฏิกิริยา

                      พลังงานเคมี (Chemical energy)  เป็นพลังงานศักย์ที่แฝงอยู่ในโครงสร้างของสาร เช่น อยู่ในรูปของน้ำมันเชื้อเพลิง ไขมัน  ซึ่งเมื่อเกิดการเผาไหม้จะปล่อยพลังงานเคมีออกมาและนำมาใช้ประโยชน์ได้พลังงานเคมีเป็นพลังงานที่มีส่วนเกี่ยวข้องและสำคัญกับสิ่งมีชีวิตมาก

ในการเกิดปฏิกิริยาของสารแต่ละปฏิกิริยานั้น ต้องมีพนเข้ลังงาามาเกี่ยวข้องกับการเกิดปฏิกิริยาเคมี 2 ขั้นตอน ดังนี้

ขั้นที่ 1 เป็นขั้นที่ดูดพลังงานเข้าไปเพื่อสลายพันธะในสารตั้งต้น
ขั้นที่ 2 เป็นขั้นที่คายพลังงานออกมาเมื่อมีการสร้างพันธะในผลิตภัณฑ์

1.ปฏิกิริยาดูดความร้อน ( Endothermic reaction)

เป็นปฏิกิริยาที่ดูดพลังงานเข้าไปสลายพันธะมากกว่าที่คายออกมา
เพื่อสร้าง พันธะ โดยในปฏิกิริยาดูดความร้อนนี้สารตั้งต้นจะมีพลังงานต่ำกว่าผลิตภัณฑ์ จึงทำให้สิ่งแวดล้อมเย็นลง
อุณหภูมิลดลง เมื่อเอามือสัมผัสภาชนะจะรู้สึกเย็น ดังภาพ

แผนภูมิพลังงานของปฏิกิริยาดูดความร้อน

2.ปฏิกิริยาคายความร้อน ( Exothermic reaction)
เป็นปฏิกิริยาที่ดูดพลังงานเข้าไปสลายพันธะน้อยกว่าที่คายออกมา
เพื่อสร้าง พันธะ โดยในปฏิกิริยาคายความร้อนนี้สารตั้งต้นจะมีพลังงานสูงกว่าผลิตภัณฑ์
จึงให้พลังงานความร้อนออกมาสู่สิ่งแวดล้อมทำให้อุณหภูมิสูงขึ้นเมื่อเอามือสัมผัสภาชนะจะรู้สึกร้อน ดังภาพ
แผนภูมิพลังงานของปฏิกิริยาคายความร้อน

สมการเคมี

ที่มา : http://e-book.ram.edu/e-book/c/CM103(50)/CM103-6(50).pdf
ที่มา : http://www.il.mahidol.ac.th/e-media/ap-chemistry1/mass_relationship/index_new003.htm

ที่มา: https://enchemcom1s.wordpress.com/สมการเคมี-chemical-equation/

สมการเคมี

ปฏิกิริยาเคมีสามารถเขียนแทนไดดวย สมการเคมี (Chemical equation) ดังนี้ สมการเคมีอยางงายๆ เขียนสารตั้งต้นไวทางซายมือ สารผลิตภัณฑไวทางขวามือ โดยมีเครื่องหมายลูกศร (→) แทนการทําปฏิกิริยา ดังสมการขางลาง สําหรับปฏิกิริยาที่สามารถ เกิดปฏิกิริยายอนกลับได จะใชลูกศรไปกลับ ( ) แทน บางครั้งอาจมีสภาวะเงื่อนไข เขียนไวดานบนสารตั้งตน → สารผลิตภัณฑ์

สารตั้งตน → สารผลิตภัณฑ์

ดังตัวอยางการเผาไหมของถานหิน เกิดปฏิกิริยาเผาไหมของคารบอน

คารบอน + ออกซิเจน → คาร บอนไดออกไซด

สมการแบบโมเลกุล : C + O2 → CO2 สําหรับการเขียนสมการเคมี เพื่อแสดงใหทราบชนิดของสารตั้งต้นและชนิด ของสารผลิตภัณฑของปฏิกิริยา อาจแสดงสถานะทางกายภาพของสารดวยตัวย่ออยูภายใน วงเล็บตามทายสูตรโมเลกุลของสารนั้น เชน

ของแข็งแทนดวย (s) ถาสารเกิดจากการตกตะกอนอาจใชเครื่องหมาย  ↓

ของเหลวแทนดวย(l) สารละลายแทนดวย (aq)

กาซแทนดวย (g) หรืออาจใชเครื่องหมาย ↑ แทนก็ได

สมการเคมีมี  2  ประเภท   คือ

1.สมการโมเลกุล (Molecule equation)  เป็นสมการเคมีของปฏิกิริยาที่มารตั้งต้นและผลิตภัณฑ์เป็นรูปอะตอม  หรือโมเลกุล  เช่น

2NaHCO3(s)                     Na2CO3(s)  +  H2O(l)  +  CO2(g)

2.สมการไอออนิก (Ionic equation) เป็นสมการเคมีของปฏิกิริยาที่สารตั้งต้นและผลิตภัณฑ์  อย่างน้อง 1 ชนิดเป็นไอออน  เช่น

H+(aq)  +  OH-(aq)                      2H2O(l)

สมการเคมีที่สมบูรณ์  จะต้องมีจำนวนอะตอมของแต่ละธาตุ  ทางซ้ายและขวาเท่ากัน  เรียกว่า  สมดุลเคมี

 สมการเคมีโดยทั่วไปแล้วจะใช้สัญลักษณ์แทนของธาตุต่าง ๆ มีลูกศรที่ชี้จากด้านซ้ายของสมการไปทางด้านขวาเพื่อบ่งบอกว่าสารตั้งต้น(reactant)ทางด้านซ้ายมือ ทำปฏิกิริยาเกิดสารใหม่ขึ้นมาเรียกว่าผลิตภัณฑ์ (product)ทางด้านขวามือ ดังนั้น จากสมการเคมีเราสามารถใช้คำนวณหาได้ว่าใช้สารตั้งต้นเท่าไรแล้วจะได้ผลิตภัณฑ์ออกมาเท่าไร

          จากกฎทรงมวลเราจึงต้องทำให้แต่ละข้างของสมการต้องมีจำนวนอะตอม และประจุที่เท่ากัน เรียกว่า การดุลสมการ ซึ่งมีข้อสังเกตดังนี้

                  1. พยายามดุลธาตุที่เหมือนกันให้มีจำนวนอะตอมทั้งสองด้านเท่ากันก่อน
2. ในบางปฏิกิริยามีกลุ่มอะตอมให้ดุลเป็นกลุ่ม
3. ใช้สัมประสิทธิ์(ตัวเลขที่ใช้วางไว้หน้าอะตอม)ช่วยในการดุลสมการ แล้วนับจำนวนอะตอมแต่ละข้างให้เท่ากัน

ตัวอย่างที่ 1 จงดุลสมการต่อไปนี้       

แนวคิด จากสมการ ให้ดุล Fe ก่อน ซึ่งด้านซ้ายมี 1 อะตอม ด้านขวามี 2 อะตอม ดังนั้นต้องใส่สัมประสิทธิ์ด้านซ้ายเป็น 2

ดุล O2 ด้วย สัมประสิทธิ์ 3/2

ทำให้เป็นเลขจำนวนเต็มโดยการ x 2 ทั้งสมการ

จะได้สมการสุดท้ายคือ

ตัวอย่างที่ 3 จงดุลสมการต่อไปนี้

เฉลย

         ในสมการเคมีสามารถบอกอัตราส่วนแสดงจำนวนอะตอมหรือโมเลกุลของสาร ซึ่งเทียบได้โดยตรงกับจำนวนโมลที่ใช้

          ในการคำนวณมีขั้นตอน ดังนี้

          1. เขียนและดุลสมการเคมี (สัมประสิทธิ์หน้าสมการเคมีที่ดุลแล้วทำให้ทราบอัตราส่วนโดยโมลของสารที่ทำปฏิกิริยาพอดีกัน)

          2. จากโจทย์ อาจกำหนดปริมาณของสารในหน่วยต่างๆ เช่น มวล หรือ ปริมาตร ดังนั้นต้องเปลี่ยนให้เป็นหน่วยโมล

          3. นำจำนวนโมลของสารที่ได้ในข้อ 2 ไปคำนวณ เพื่อหาปริมาณของสารตามที่โจทย์ต้องการ โดยเทียบกับอัตราส่วนโดยโมลของสารที่ได้จากข้อ 1

          เช่น ถ้าโจทย์กำหนดปริมาณสาร A และให้หาประมาณสาร B ที่เกิดขึ้น

ความสัมพันธ์ของสมการเคมีกับการคำนวณ

ตัวอย่างที่ 4 แอมโมเนียมซัลเฟต (NH4)2SO4 ใช้เป็นวัตถุดิบผลิตปุ๋ย เตรียมได้โดยการผ่านแก๊สแอมโมเนีย (NH3) ลงในสารละลาย 65% ของกรดซัลฟิวริกที่มีความหนาแน่น 1.55 g/mL ต้องใช้กรดซัลฟิวริก (H2SO4) ปริมาตรเท่าไรในการทำปฏิกิริยากับ 1.00 กิโลกรัมของแก๊สแอมโมเนีย เพื่อให้เกิดปฏิกิริยาพอดี

แนวคิด  ต้องเขียนสมการเคมีก่อน และดุลสมการด้วย

วิธีคิด

         ดังนั้น ต้องใช้สารละลายกรดซัลฟูริก 2.9 ลิตรในการทำปฏิกิริยา

ตัวอย่างที่ 5 สารละลาย Sodium hypochlorite (NaOCl) หรือที่รู้จักกันคือน้ำยาซักผ้าขาว เตรียมได้จากปฏิกิริยาระหว่าง Sodium hydroxide กับ Chlorine

        ต้องใช้ NaOH กี่กรัมในการทำปฏิกิริยากับ 25.0 g Cl2

แนวคิด   ดุลสมการเคมีก่อนอันดับแรก จากนั้นดูว่ามีค่าใดที่กำหนดมาให้บ้าง แล้วทำตามแผนดังนี้

      เริ่มต้นจากการหาจำนวนโมลของ Cl2 โดยมวลโมเลกุลของ Cl2เท่ากับ 70.9 g/mol ดังสมการ

       จากสมการเคมีจะได้ว่า 1 โมลของ Cl2 ทำปฏิกิริยากับ 2 โมลของ NaOH และมวลโมเลกุลของ NaOH คือ 40.0 g/mol จะคำนวณหาจำนวนกรัมของ NaOH ที่ต้องใช้ทำปฏิกิริยา ดังสมการ

สารประกอบ และธาตุ

ที่มา : http://www.nakhamwit.ac.th/pingpong_web/Element&Compounds.htm
ที่มา : http://www.kr.ac.th/ebook2/narumon/03.html

ธาตุและสารประกอบ

การแบ่งสารตามองค์ประกอบทางเคมี แบ่งได้ดังนี้

ผลการค้นหารูปภาพสำหรับ แผนผังสารประกอบ และธาตุ

        1. ธาตุ (Element)  หมายถึง  สารบริสุทธิ์เนื้อเดียวที่มีองค์ประกอบอย่างเดียว  ธาตุไม่สามารถจะนำมาแยกสลายให้กลายเป็นสารอื่นโดยวิธีการทางเคมี  ธาตุมีทั้งสถานะที่เป็นของแข็ง  เช่น  ธาตุสังกะสี(Zn)   ตะกั่ว(Pb)  เงิน (Ag) และดีบุก (Sn) ,   เป็นของเหลว เช่น ปรอท (Hg)    เป็นก๊าซ   เช่น  ไนโตรเจน (N2)   ฮีเลียม (He)  ออกซิเจน (O2)     ไฮโดรเจน (H2)  เป็นต้น ธาตุยังแบ่งออกเป็น โลหะ อโลหะ และกึ่งโลหะ ตามสมบัติที่แตกต่างกันออกไป

        ธาตุโลหะ (metal) จะเป็นธาตุที่มีสถานะเป็นของแข็ง (ยกเว้นปรอท ที่เป็นของเหลว  ) มีผิวที่มันวาว  นำความร้อน และไฟฟ้าได้ดี  มีจุดเดือดและจุดหลอมเหลวสูง (ช่วงอุณหภูมิระหว่างจุดหลอมเหลวกับจุดเดือดจะต่างกันมาก)   ได้แก่  โซเดียม (Na),   เหล็ก (Fe) , แคลเซียม (Ca) , ปรอท (Hg),  อะลูมิเนียม (Al), แมกนีเซียม (Mg) ,  สังกะสี (Zn) , ดีบุก (Sn)  ฯลฯ

        ธาตุอโลหะ    มีได้ทั้งสามสถานะ  สมบัติส่วนใหญ่จะตรงข้ามกับอโลหะ  เช่น ผิวไม่มันวาว ไม่นำไฟฟ้า ไม่นำความร้อน จุดเดือดและจุดหลอมเหลวต่ำ  เป็นต้น   ได้แก่  คาร์บอน( C ) , ฟอสฟอรัส (P) ,กำมะถัน (S) โบรมีน (Br),  ออกซิเจน (O2) ไฮโดรเจน (H2),  คลอรีน (Cl2) ,  ฟลูออรีน (F2) เป็นต้น

         ธาตุกึ่งโลหะ (metalloid)  ได้แก่  โบรอน (B) ,  ซิลิคอน ( Si) ,   เป็นต้น

        2. สารประกอบ (compound) หมายถึง “สารบริสุทธิ์เนื้อเดียวที่เกิดจากธาตุตั้งแต่สองชนิดขึ้นไปเป็นองค์ประกอบ”  สารประกอบเกิดจากการรวมตัวของธาตุโดยวิธีการทางเคมี สามารถแยกสลายให้เกิดเป็นสารใหม่หรือกลับคืนเป็นธาตุเดิมได้  สารประกอบจะมีสมบัติเฉพาะตัวที่แตกต่างจากธาตุเดิม เช่น   น้ำ  มีสูตรเคมีเป็น H2O น้ำเป็นสารประกอบที่เกิดจากธาตุไฮโดรเจน(H) และออกซิเจน (O)  แต่มีสมบัติแตกต่างจากไฮโดรเจนและออกซิเจน  น้ำตาลทรายประกอบด้วยธาตุคาร์บอน ( C ),ไฮโดรเจน (H) ,และออกซิเจน (O) เป็นต้น

                สารประกอบชนิดหนึ่ง ๆ จะต้องมีอัตราส่วนของธาตุที่เป็นองค์ประกอบคงที่  เช่นน้ำ ประกอบด้วยธาตุไฮโดรเจน และออกซิเจน โดยมีอัตราส่วนโดยมวลของ  H : O = 1 : 8  คาร์บอนไดออกไซด์ประกอบด้วยธาตุคาร์บอนและออกซิเจนโดยมีอัตราส่วนโดยมวลของ  C : O = 3 : 8  เป็นต้น

                สารประกอบมีทั้งสถานะที่เป็นของแข็ง  ของเหลว  และก๊าซ  เช่น  กลูโคส (C6H12O6) หินปูน (CaCo3 ) เป็นของแข็ง  เอธานอล (C2H5OH) และอะซิโตน (CH3COCH3)   เป็นของเหลว   มีเธน (CH4)  และ ซัลเฟอร์ไดออกไซด์ (SO2)  เป็นก๊าซ  เป็นต้น

        3. ของผสม (Mixture)  หมายถึง  สารที่ไม่บริสุทธิ์ซึ่งเกิดจากสารบริสุทธิ์ตั้งแต่  2  ชนิดขึ้นไปผสมกัน อาจจะเป็นการผสมกันระหว่างธาตุกับธาตุ  สารประกอบกับสารประกอบ  หรือธาตุกับสารประกอบก็ได้  เช่น อากาศเป็นของผสมระหว่างก๊าซไนโตรเจน  ออกซิเจน  และก๊าซอื่นๆ  เล็กน้อย  พริกกับเกลือ  เป็นของผสมระหว่างพริกกับเกลือ  น้ำเกลือเป็นของผสมระหว่าง น้ำกับเกลือ  และทองเหลือง ซึ่งเป็นของผสมระหว่างทองแดง (Cu)  กับสังกะสี (Zn)  เป็นต้น

เปรียบเทียบสมบัติของธาตุ และสารประกอบ

ธาตุ       

1. ประกอบด้วยอะตอมชนิดเดียว2. แยกออกโดยวิธีเคมีไม่ได้3. อาจแยกออกโดยวิธีนิวเคลียร์4. เขียนแทนด้วยสัญลักษณ์   

สารประกอบ   

1. ประกอบด้วยอะตอมตั้งแต่ 2 ตัวขึ้นไป2. แยกออกโดยวิธีเคมีได้3. แยกง่ายกว่าธาตุ4. เขียนแทนด้วยสูตร

สมบัติอื่น ๆ บางประการของธาตุบางชนิด

ธาตุ

ความมันวาว

การนำความร้อน

การนำไฟฟ้า

ความเหนียว

Al

เป็นมันวาว

นำได้ดี

นำได้ดี

เหนียว

Mg

เป็นมันวาว

นำได้ดี

นำได้ดี

เหนียว

C( แกรไฟต์)

ไม่มันวาว

นำได้ดี

นำได้ดี

เปราะ

S

ไม่มันวาว

ไม่นำ

ไม่นำ

เปราะ

P

ไม่มันวาว

ไม่นำ

ไม่นำ

เปราะ

               การที่เราจำแนกธาตุทั้งหลายออกเป็นโลหะกับอโลหะ ก็เนื่องจากธาตุต่าง ๆ แม้จะมีสมบัติเฉพาะตัวแตกต่างกัน แต่ก็มีสมบัติบางประการเหมือนกันหรือคล้ายกัน พอจะแยกออกได้เป็น 2 พวก คือ

ตาราง การเปรียบเทียบสมบัติของโลหะและอโลหะ

สมบัติ

โลหะ

อโลหะ

1. สถานะ

เป็นของแข็งในสภาวะปกติ ยกเว้นปรอทซึ่งเป็นของเหลว มีอยู่ได้ทั้ง 3 สถานะ ธาตุที่เป็นก๊าซในภาวะปกติเป็นอะโลหะ

2. ความมันวาว

มีวาวโลหะ ขัดขึ้นเงาได้ ส่วนมากไม่มีวาวโลหะ ยกเว้น แกรไฟต์ และเกล็ดไอโอดีน

3. การนำไฟฟ้าและน้ำความร้อน

นำไฟฟ้าและนำความร้อนได้ดี เช่น สายๆฟฟ้ามักทำด้วยทองแดง นำไฟฟ้าและนำความร้อนไม่ได้ยกเว้นแกรไฟต์ นำไฟฟ้าได้ดี

4. ความเหนียว

ส่วนมากเหนียว ดึงยืดเป็นเส้นลวด หรือตีเป็นแผ่นบ่าง ๆ ได้ อโลหะที่เป็นของแข็ง มีเปราะดึงยืดออกเป็นเส้นลวดหรือตีเป็นแผ่นบาง ๆ ไม่ได้

5. ความหนาแน่น หรือความถ่วงจำเพาะ (ถ. พ. )

ส่วนมากมีความหนาแน่น หรือ ถ . พ. สูง มีความหนาแน่น หรือ ถ . พ. ต่ำ

6. จุดเดือนและจุดหลอดเหลว

ส่วนมากสูงเช่น เหล็ก มีจุดหลอดเหลว 1,536 OC จุดเดือด 3,000 OC ยกเว้นปรอท ซึ่งมีจุดหลอดเหลวต่ำเพียง -39 OC ส่วนมากต่ำโดยเฉพาะพวกอโลหะที่เป็นก๊าซ เช่น ออกซิเจน มีจุดเดือด -183 OC จุดเยือกแข็ง ( จุดหลอดเหลว) -219 OC กำมะถันมีจุดหลอดเหลว 113 OC จุดเดือด 444 OC เป็นต้น

7. การเกิดเสียงเมื่อเคาะ

มีเสียงดังกังวาน ไม่มีเสียงดังกังวาน

8. เกี่ยวกับอิเล็กตรอนและประจุไอออน

เป็นพวกชอบให้อิเล็กตรอน ทำให้เกิดเป็นไอออนบวก เป็นพวกชอบรับอิเล็กตรอน ทำให้เกิดเป็นไอออนลบ

9. การ เกิดสารประกอบ

เกิดสารประกอบ เช่น ออกไซด์ คลอไรด์ ซัลไฟด์ และไฮไดร์ได้ เกิดสารประกอบ เช่น ออกไซด์ คลอไรด์ ซัลไฟด์ และไฮไดร์ได้

10. สารประกอบออกไซด์

โลหะออกไซด์เป็นเบส อโลหะออกไซด์เป็นกรด

              ส่วนพวกกึ่งโลหะ หมายถึง ธาตุที่มีสมบัติกึ่งโลหะและอโลหะ เช่น ธาตุซิลิคอน มีสมบัติบางประการคล้ายโลหะ เช่น นำไฟฟ้าได้บ้างที่อุณหภูมิปกติ และนำไฟฟ้าได้มากขึ้นเมื่ออุณหภูมิเพิ่มขึ้น เป็นของแข็ง เป็นมันวาวสีเงิน จุดเดือดสูง แต่เปราะแตกง่าย คล้ายอโลหะ

โลหะทรานซิชัน

          โลหะทรานซิชันบรรจุไว้ตรงกลางของตารางธาตุ โลหะทรานซิชันที่รู้จักกันดี คือ เหล็ก ทองแดง สังกะสี โครเมียม นิกเกิล และทองคำ โลหะทรานซิชัน มีทั้งหมด 8 หมู่ แต่หมู่ 8 มีทั้งหมด 3 หมู่ย่อย จึงมีธาตุต่างๆ รวม 10 หมู่ และมีทั้งหมด 4 คาบ ดังรูป

สมบัติทางกายภาพ

  • โลหะทรานซิชันมีสมบัติแข็ง หนัก เป็นตัวนำความร้อนและไฟฟ้าที่ดี เป็นประกายวาว จุดเดือดและจุดหลอมเหลวสูง ซึ่งถือได้ว่าเป็นแบบฉบับของโลหะ (ดูเรื่องสมบัติของโลหะ)
  • เหล็ก นิกเกิล และโคบอลต์ เป็นโลหะที่เป็นแม่เหล็ก
  • โลหะทรานซิชันใช้ผสมกับโลหะอื่นได้โลหะผสม (โลหะอัลลอยด์)

สมบัติทางเคมี

  • โลหะทรานซิชันว่องไวต่อการเกิดปฏิกิริยาน้อยกว่าโลหะหมู่ 1 และโลหะหมู่ 2
  • โลหะทรานซิชันมีเลขออกซิเดชันได้หลายค่า เช่น Fe มีเลขออกซิเดชัน = +3 และ +2 และ Cu มีเลขออกซิเดชัน = +2 และ +1 เป็นต้น
  • โลหะทรานซิชันหลายชนิดเป็นตัวเร่งปฏิกิริยาที่ดี เช่น ในอุตสาหกรรมการผลิตแอมโมเนีย ใช้เหล็กเป็นตัวเร่งปฏิกิริยา การผลิดกรดซัลฟูริก ใช้ วาเนเดียม (v) ออกไซด์เป็นตัวเร่งปฏิกิริยา
  • สารประกอบและไอออนของโลหะทรานซิชันมักมีสี เช่น CuCl 2 มีสีเขียวเข้ม FeCl 3 มีสีส้ม CuSO 4 มีสีฟ้า MnSO 4 มีสีชมพู เป็นต้น

 

ธาตุกัมมันตรังสี

ธาตุกัมมันตรังสี หมายถึง ธาตุที่แผ่รังสีได้ เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า 82

กัมมันตภาพรังสี หมายถึง ปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว มี 3 ชนิด คือ รังสีแอลฟา รังสีเบต้า และรังสีแกมมา

ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่งมีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ เช่น

(ธาตุยูเรเนียม)…………. (ธาตุทอเลียม) (อนุภาคแอลฟา)

จะเห็นได้ว่าการแผ่รังสีจะทำให้เกิดธาตุใหม่ได้ หรืออาจเป็นธาตุเดิมแต่จำนวนโปรตอนหรือนิวตรอนอาจไม่เท่ากับธาตุเดิม และธาตุกัมมันตรังสีแต่ละธาตุ มีระยะเวลาในการสลายตัวแตกต่างกันและแผ่รังสีได้แตกต่างกัน โดย มวลจำนวนหนึ่งของธาตุ จะลดลงเหลือครึ่งหนึ่งของมันที่มีอยู่เดิม เมื่อเวลาผ่านไป เรียกว่า ครึ่งชีวิตของธาตุ ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทปและสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้

 

สูตรคำนวณหา ครึ่งชีวิตของธาตุ

กำหนดให้ N คือ มวลของธาตุที่เหลืออยู่
N 0 คือ มวลของธาตุที่มีอยู่เดิม
t คือ เวลาที่ผ่านไปที่เกิดการสลายตัว
t 0 คือ เวลา ครึ่งชีวิตของแต่ละธาตุ

 

รังสีที่ทำให้เกิดการแตกของประจุ ( Ionizing Radiation )

  • รังสีแอลฟา อะตอมใหม่จะมี เลขอะตอมลดลง 2 เลขมวลลดลง 4 อนุภาคแอลฟา มีอำนาจทะลุทะลวงต่ำเพียงแค่กระดาษ อากาศที่หนาประมาณ 2- 3 cm น้ำที่หนาขนาดมิลลิเมตร หรือโลหะบางๆ ก็สามารถกั้นอนุภาคแอลฟาได้
  • รังสีของอนุภาคโพซิตรอน มีสมบัติเช่นเดียวกับอนุภาคบีตา ต่างกันที่โพซิตรอนมีประจุบวกและไม่เสถียร การแผ่รังสีของอนุภาคโพซิตรอนนิวเคลียสจะมีจำนวนโปรตอนมากกว่านิวตรอน เมื่อเทียบจากไอโซโทปที่เสถียรของธาตุเดียวกัน
  • รังสีเบต้า มีสมบัติเหมือนอิเล็กตรอน คือ ประจุเป็น –1 มวลเท่ากับมวลของอิเล็กตรอน มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า และมีความเร็วใกล้เคียงกับความเร็วแสง
  • รังสีแกมมา เป็นรังสีที่มีพลังงานสูง ไม่มีประจุ ไม่มีมวล เป็นรังสีแม่เหล็กไฟฟ้ามีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง
  • สัญลักษณะของอนุภาคต่าง ๆ ( ต้องจำ) เช่น เบต้า b ( )   แอลฟา a ( ) แกมมา g โปรสิตรอน ( ) โปรตอน ( ) และนิวตรอน ( )

ประเภทของปฏิกิริยานิวเคลียร์ 

การเกิดปฏิกิริยาของธาตุกัมมันตรังสี เรียกว่า ปฏิกิริยานิวเคลียร์ ซึ่งมี 2 ประเภท คือ

1. ปฏิกิริยาฟิวชัน (Fussion reaction) คือ ปฏิกิริยานิวเคลียร์ที่นิวเคลียสของธาตุเบาหลอมรวมกันเข้าเป็นนิวเคลียสที่หนักกว่า และมีการคายความร้อนออกมาจำนวนมหาศาลและมากกว่าปฏิกิริยาฟิชชันเสียอีก ดังภาพ ปฏิกิริยาฟิวชันที่รู้จักกันดี คือ ปฏิกิริยาระเบิดไฮโดรเจน (Hydrogen bomb)

2. ปฏิกิริยาฟิชชัน (Fission reaction) คือปฏิกิริยานิวเคลียร์ที่เกิดขึ้น เนื่องจากการยิงอนุภาคนิวตรอนเข้าไปยังนิวเคลียสของธาตุหนัก แล้วทำให้นิวเคลียร์แตกออกเป็นนิวเคลียร์ที่เล็กลงสองส่วนกับให้อนุภาคนิวตรอน 2-3 อนุภาค และคายพลังงานมหาศาลออกมา ดังภาพ ถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดอย่างรุนแรงที่เรียกว่า ลูกระเบิดปรมาณู (Atomic bomb) เพื่อควบคุมปฏิกิริยาลูกโซ่ไม่ให้เกิดรุนแรง นักวิทยาศาสตร์จึงได้สร้างเตาปฏิกรณ์ปรมาณู ซึ่งสามารถนำไปใช้ผลิตกระแสไฟฟ้าได้

ประโยชน์ของธาตุกัมมันตรังส

1.  ทำเตาปฏิกรณ์ปรมาณู ทำโรงงานไฟฟ้าพลังงานปรมาณู และเรือดำน้ำปรมาณู
2.  ใช้สร้างธาตุใหม่หลังยูเรเนียม สร้างขึ้นโดยยิ่งนิวเคลียสของธาตุหนักด้วยอนุภาคแอลฟา หรือด้วยนิวเคลียสอื่นๆ ที่ค่อนข้างหนัก และมีพลังงานสูง
3.  ใช้ศึกษากลไกของปฏิกิริยาเคมี เช่น การเกิดปฏิกิริยาของเอสเทอร์
4.  ใช้ในการหาปริมาณวิเคราะห์
5.  ใช้ในการหาอายุของซากสิ่งมีชีวิต (C – 14)
6.  การรักษาโรค เช่น มะเร็ง (Ra – 226)
7. ใช้ในการถนอมอาหารให้อยู่ได้นานๆ ( Co-60)
8. ใช้ ศึกษาความต้องการปุ๋ยของพืช และปรับปรุงเมล็ดพันธุ์ที่ต้องการ (P – 32)

โทษของธาตุกัมมันตรังสี

ถ้าร่างกายได้รับจะทำให้โมเลกุลภายในเซลล์เกิดการเปลี่ยนแปลงไม่สามารถทำงานตามปกติได้ ถ้าเป็นเซลล์ที่เกี่ยวข้องกับการถ่ายทอดลักษณะพันธุกรรมก็จะเกิดการผ่าเหล่า โดยเฉพาะเซลล์สืบพันธุ์ เมื่อเข้าไปในร่างกายจะไปสะสมในกระดูก ส่วนผลที่ทำให้เกิดความป่วยไข้จากรังสี เมื่ออวัยวะส่วนใดส่วนหนึ่งของร่างกายได้รับรังสี โมเลกุลของธาตุต่างๆ ที่ประกอบเป็นเซลล์จะแตกตัว ทำให้เกิดอาการป่วยไข้และเกิดมะเร็งได้

ตารางแสดง ธาตุไอโซโทป

ธาตุ/ไอโซโทป

ครึ่งชีวิต

แบบการสลายตัว

ประโยชน์

Tc -99

6 ชั่วโมง

C-14

5,760 ปี

เบต้า

หาอายุวัตถุโบราณ

Co-60

5.26 ปี

แกมมา

รักษามะเร็ง

Au-198

2.7 วัน

เบต้า แกมมา

วินิจฉัยตับ

I-125

60 วัน

แกมมา

หาปริมาณเลือด

I-131

8.07 วัน

เบตา แกมมา

วินิจฉัยอวัยวะ

P-32

14.3 วัน

เบต้า

รักษามะเร็ง

Pu-239

24,000 ปี

อัลฟา   แกมมา

พลังงาน

K-40

1 x10 9 ปี

เบต้า

หาอายุหิน

U-238

4.5×10 9 ปี

อัลฟา   แกมมา

วัตถุเริมต้นให้ Pu-239

U-235

7.1×10 9 ปี

อัลฟา   แกมมา

รักษามะเร็ง

Cl-36

4×10 5 ปี

Po-216

0.16 วินาที

Ra-226

1,600 ปี

อัลฟา   แกมมา

รักษามะเร็ง

Na-24

15 ชั่วโมง

ตารางแสดง ปริมาณและผลของรังสี

ปริมาณรังสีที่รับ

ผลของรังสีที่ได้รับต่อสุขภาพ

4 มิลลิเร็ม เดินทางไปกลับด้วยเครื่องบิน นิวยอร์ค-ลอนดอน
20 มิลลิเร็ม x -ray ปอด 1 ครั้ง
30-50 มิลลิเร็ม/ต่อปี อยู่ในบ้านไม้
50-100 มิลลิเร็ม/ต่อปี อยู่ในบ้านอิฐ
70-100 มิลลิเร็ม/ต่อปี อยู่ในบ้านปูน(คอนกรีต)
170 มิลลิเร็ม/ต่อปี ตายด้วยโรคมะเร็ง 1 ใน 250,000 คน
500 มิลลิเร็ม/ต่อปี ค่ามาตรฐานที่นานาชาติยอมรับได้สำหรับประชาชน ทั่ว ๆไป
5000 มิลลิเร็ม/ต่อปี ค่ามาตรฐานที่นานาชาติยอมรับได้สำหรับเจ้าหน้าที่ใน อุตสาหกรรมนิวเคลียร์
25 เร็ม มีเลือดขาวต่ำกว่าปกติเล็กน้อย
50 เร็ม เกิดมีรอยแผลของผิวหนัง เม็ดเลือดขาวต่ำชัดเจนขึ้น
100 เร็ม คลื่นไส้อาเจียนผมร่วงมีอัตราการเสี่ยงต่อโรคมะเร็งในระยะยาว
200-600 เร็ม เลือดขาวต่ำอย่างรุนแรง มีเลือดออกในร่างกาย มีโอกาสเสียชีวิต 50 %
600-1000 เร็ม เม็ดเลือดขาวถูกทำลายโดยสิ้นเชิง ระบบทำงานของลำไส้ถูกทำลาย มีโอกาสเสียชีวิต 80-100%
มากกว่า 1000 เร็ม เสียชีวิตใน 1-14 วัน

การจัดตำแหน่งไฮโดรเจนในตารางธาตุ

การจัดธาตุให้อยุ่ในหมู่ใดของตารางธาตุจะใช้สมบัติที่คล้ายกันเป็นเกณฑ์ ในตารางธาตุปัจจุบันได้จัดให้ธาตุไฮโดรเจนอยู่ในคาบที่ 1 ระหว่างหมู่ 1 กับหมู่ 7 เพราะเหตุใดจึงเป็นเช่นนั้น ให้ศึกษาสมบัติบางประการของธาตุไฮโดรเจนเปรียบเทียบกับสมบัติธาตุหมู่ 1 และหมู่ 7

ตารางสมบัติของประการของธาตุไฮโดรเจนกับธาตุหมู1 กับหมู่ 7

สมบัติ

ธาตุหมู่ 1

ธาตุไฮโดรเจน

ธาตุหมู่ 7

จำนวนเวเลนต์อิเล็กตรอน
1
1
7
เลขออกซิเดซันในสารประกอบ
+1
+1 และ -1
+1 +3 +5 +7 – 1
ค่า IE
382-526
1318
1015 – 1687
อิเล็กโทรเนกาทิวิตี
1.0-0.7
2.1
1015 – 1687
สถานะ
ของแข็ง
ก๊าซ
ก๊าซ /ของเหลว/ของแข็ง
การนำฟ้า
นำ
ไม่นำ
ไม่นำ

 

เมื่อพิจารณาข้อมูลในตาราง พบว่าไฮโดรเจนมีเวเลนซ์อิเล็กตรอน 1 และมีเลขออกซิเดชัน +1 ไฮโดรเจนจึงควรอยู่ในหมู่ 1 คาบที่ 1 แต่ไฮโดรเจนมีสมบัติคล้ายธาตุหมู่ 7 หลายประการคือ มีเลขออกซิเดชันได้มากกว่าหนึ่งค่า มีพลังงานไอออไนเซชันลำดับที่ 1 และอิเล็กโทรเนกาติวิตีสูง มีสถานะเป็นก๊าซ ไม่นำไฟฟ้า เมื่อเกิดเป็นสารประกอบต้องการเพียง 1 อิเล็กตรอนก็จะมีการจัดอิเล็กตรอนเช่นเดียวกับฮีเลียมซึ่งเป็นธาตุในหมู่ 7 คาบที่ 1 อยู่ระหว่างหมู่ 1 กับ 7 ดังปรากฏในตารางธาตุ

 

สารประกอบออกไซด์

สารประกอบออกไซดหมายถึง สารประกอบที่เกิดจากธาตุออกซิเจนรวมกับธาตุอื่น ๆ ซึ่งอาจจะเป็นโลหะหรืออโลหะก็ได้ เช่น Na 2O, P 2O 3, NO 2

การเตรียมสารประกอบออกไซด์ อาจจะทำได้โดยนำออกซิเจนมาเผารวมกับธาตุต่าง ๆ เช่น

4Na (s) + O 2 (g) ————–> 2Na 2O (s)

2Ca(s) + O 2 (g) ————–> 2CaO (s)

4Al(s) + O 2 (g) —————> 2Al 2O 3 (s)

C(s) + O 2 (g) ————–> CO 2 (g)

สมบัติบางประการของสารประกอบออกไซด

จากการศึกษาสมบัติบางประการของสารประกอบออกไซด์ของ 20 ธาตุแรก เกี่ยวกับสูตรของสารประกอบ จุดหลอมเหลว สถานะ การละลายน้ำ และความเป็นกรด – เบสของสารละลายได้ผลสรุปดังนี้

1. เมื่อใช้ความเป็นโลหะและอโลหะเป็นเกณฑ์ จะแบ่งสารออกได้เป็น 2 กลุ่มดังนี้

ก . ออกไซด์ของโลหะ เช่น Li 2O BeO Na 2O MgO Al 2O 3 K 2O CaO
ข . ออกไซด์ของอโลหะ เช่น H 2O CO 2 N 2O 5 F 2O P 2O 5 SO 2 Cl 2O

2. การแบ่งกลุ่มย่อยอาจจะใช้สมบัติความเป็นกรด – เบสของสารละลาย เช่น

ก . ออกไซด์ของโลหะ

– สารละลายเป็นกรด –
– สารละลายเป็นเบส ได้แก่ Li 2O Na 2O MgO K 2O และ CaO
– สารละลายเป็นกลาง ได้แก่ –
– พวกไม่ละลายน้ำ ได้แก่ BeO Al 2O 3 B 2O 3 SiO 2

ข . ออกไซด์ของอโลหะ

– สารละลายเป็นกรด ได้แก่ CO 2 N 2O 5 F 2O P 2O 5 SO 2 และ Cl 2O
– สารละลายเป็นเบส ได้แก่ –
– สารละลายเป็นกลาง ได้แก่ H 2O
– พวกไม่ละลายน้ำ ได้แก่ –

4. เมื่อใช้จุดหลอมเหลวเป็นเกณฑ์จะได้กลุ่มย่อยดังนี้

ออกไซด์ที่เป็นของแข็ง
และมีจุดหลอมเหลวสูง

ออกไซด์ที่เป็นของแข็งและ
มีจุดหลอมเหลวค่อนข้างสูง

ออกไซด์ที่เป็นของเหลวหรือ
ก๊าซและมีจุดหลอมเหลวต่ำ

สูตร

จุดหลอมเหลว (0C)

สูตร

จุดหลอมเหลว (0C)

สูตร

จุดหลอมเหลว (0C)

Li 2O

1700

K 2O

350

H 2O(l)

0

Na 2O

1275

B 2O 3

460

CO 2(g)

-57

BeO

2530

P 2O 5

580

N 2O 5(g)

-102

MgO

2800

F 2O(g)

-218

CaO

2580

P 2O 5(g)

-224

Al 2O 3

2045

SO 2(g)

-73

Cl 2O(g)

-20

โดยสรุป

ก . ออกไซด์ของโลหะ มีสถานะเป็นของแข็งที่มีจุดหลอมเหลวค่อนข้างสูง พวกที่ละลายน้ำได้สารละลายจะแสดงสมบัติเป็นเบส เปลี่ยนสีกระดาษลิตมัสจากแดงเป็นน้ำเงิน
ข . ออกไซด์ของอโลหะ มีสถานะเป็นได้ทั้งของแข็ง ของเหลวและก๊าซ ส่วนมากมีจุดหลอมเหลวค่อนข้างต่ำพวกที่ละลายน้ำได้สารละลายจะแสดงสมบัติเป็นกรด

เมื่อนำสารประกอบออกไซด์มาจัดเรียงเป็นหมวดหมู่เดียวกันตามตารางธาตุ จะได้ดังนี้

สารประกอบคลอไรด์

สารประกอบคลอไรด์ หมายถึง สารประกอบธาตุคู่ระหว่างธาตุคลอรีนกับธาตุอื่นๆ เช่น NaCl CaCl 2 HCl และ CCl 4 เป็นต้น

สารประกอบคลอไรด์สามารถเตรียมได้โดยตรง โดยผ่านก๊าซคลอรีนแห้งไปบนธาตุที่กำลังร้อน ดังนั้นในขั้นแรกจึงต้องเตรียมก๊าซคลอรีนก่อนแล้วจึงผ่านก๊าซคลอรีนที่ได้นั้นลงไปบนธาตุที่ร้อนดังกล่าว

การเตรียมก๊าซคลอรีนในห้องปฏิบัติการ ใช้ปฏิกิริยาระหว่างโปตัสเซียมเพอร์แมงกาเนต (KMnO 4) กับก๊าซไฮโดรคลอริก(HCl) เข้มข้นประมาณ 10 mol/dm 3 ซึ่งเกิดปฏิกิริยาต่อไปนี้

KMnO 4 (s) + 16 HCl (aq) —–> 2KCl (aq) + 2MnCl 2 (aq) + 8H 2 (l) + 5Cl 2 (g)

หมายเหตุ ก๊าซคลอรีนเป็นก๊าซพิษ ดังนั้นการเตรียมจึงต้องทำอย่างระมัดระวัง

สมบัติของสารประกอบคลอไรด์

1. การแตกตัวเป็นไอออนทดสอบได้โดยใช้สารละลาย AgNO 3 ซึ่งถ้ามีCl – จะเกิดตะกอนของ AgCl จัดว่าเป็นวิธีทดสอบคลอไรด์ไอออนวิธีหนึ่ง จากสมการดังต่อไปนี้

Ag +(aq) + Cl – (aq) ——-> AgCl (s)

2. แบ่งสารประกอบคลอไรด์ออกเป็น 2 กลุ่มใหญ่ๆ คือ คลอไรด์ของโลหะและคลอไรด์ของอโลหะดังนี้

ก . คลอไรด์ของโลหะ ได้แก่ LiCl BeCl 2 NaCl MgCl 2 AlCl 3 KCl และ CaCl 2
ข . คลอไรด์ของอโลหะ ได้แก่ HCl   BCl 3  CCl 4  NCl 3   Cl 2O  ClF   PCl 5   SiCl 4 และ SCl 2

3. เมื่อใช้ความเป็นกรด – เบสของสารละลาย จะแบ่งกลุ่มย่อยได้ดังนี้

ก . คลอไรด์ของโลหะ

– สารละลายเป็นกรด ได้แก่ AlCl 3   BeCl 2
– สารละลายเป็นกลาง ได้แก่ LiCl   NaCl   MgCl 2   KCl และ CaCl 2
– สารละลายเป็นเบส –

ข . คลอไรด์ของอโลหะ

– สารละลายเป็นกรด ได้แก่ HCl   BCl 3   Cl 2O   ClF   PCl 5   SiCl 4 และ SCl 2
– สารละลายเป็นกลาง ได้แก่ –
– สารละลายเป็นเบส ได้แก่ –

4. เมื่อใช้สถานะและจุดหลอมเหลว จะแบ่งกลุ่มย่อยได้ดังในตาราง

คลอไรด์ที่เป็นของแข็ง
และมีจุดหลอมเหลวสูง

คลอไรด์ที่เป็นของแข็งและ
มีจุดหลอมเหลวค่อนข้างสูง

คลอไรด์ที่เป็นของเหลวหรือก๊าซ
และมีจุดหลอมเหลวต่ำ

สูตร

จุดหลอมเหลว ( 0C)

สูตร

จุดหลอมเหลว ( 0C)

สูตร

จุดหลอมเหลว ( 0C)

LiCl

610

AlCl 3

198

SCl 2

-80

NaCl

801

PCl 5

148

CCl 4

-23

KCl

770

ClF

-154

BeCl 2

405

Cl 2O

-20

MgCl 2

712

BCl 3

-107

CaCl 2

772

NCl 3

-27

SiCl 4

-68

HCl

-114

เมื่อนำคลอไรด์มาจัดรวมกันเป็นหมวดหมู่ หมวดหมู่เดียวกันตามตารางธาตุ จะได้ดังนี้

ธาตุและสารประกอบในชีวิตประจำวัน

1. โซเดียมคลอไรด์ ( NaCl ) ใช้ปรุงรสอาหาร ถนอมอาหาร เป็นสารตั้งต้นในการผลิตโซเดียมไฮโดรเจนคาร์บอเนต (NaHCO 3 ) หรือโซดาทำขนม โซเดียมคาร์บอเนต (NaCO 3 ) หรือโซดาแอส โซเดียมไฮดรอกไซด์ (NaOH ) หรือโซดาไฟ และไฮโดรเจนคลอไรด์ (HCl ) ในต่างประเทศใช้ NaCl สำหรับละลายน้ำแข็งในหิมะ เป็นสารจำเป็นในร่างกาย คือ Na + เป็นส่วนประกอบของของเหลวในร่างกาย

2. แคลเซียมคลอไรด์ ( CaCl 2 )  ใช้เป็นสารดูดความชื้น ใช้ในเครื่องทำความเย็นในอุตสาหกรรมห้องเย็น ใช้ทำฝนเทียม

3. โพแทสเซี่ยมคลอไรด์ ( KCl ) ใช้ทำปุ๋ย

4. แอมโมเนียมคลอไรด์ ( NH 4Cl ) ใช้เป็นน้ำประสารดีบุก ใช้เป็นอิเล็กโทรไลต์เซลล์ถ่านไฟฉาย

5. โซเดียมหรือแคลเซียมคลอเรต ( NaClO 3 , Ca (ClO 3 ) 2   ใช้เป็นสารฟอกสี ฟอกขาวเยื่อกระดาษ ใช้ฆ่าแบคทีเรีย และสาหร่ายในน้ำประปา และในน้ำสระ

6. HCl    ใช้กำจัดสนิมเหล็กก่อนที่จะฉาบสารกันสนิม

7. DDT   ใช้เป็นยาฆ่าแมลง (ปัจจุบันเป็นสารต้องห้าม)

8. ฟรีออน หรือสาร CFC ใช้ทำความเย็น เป็นตัวขับดันในกระป๋องสเปรย์

9. โบรโมคลอโรไดฟลูออโรมีเทน ( BFC ) เป็นสารที่ใช้ดับเพลิงในรถยนต์    และเครื่องบิน

10. แคลเซียม ( Ca ) เป็นธาตุหมู่ 2 มีความแข็งแรงพอใช้เป็นโลหะที่มีเงาวาว เบา ถ้าถูกับไอน้ำในอากาศมันจะหมดเงาทันที ทำปฏิกิริยากับน้ำได้ไฮโดรเจน

11. แคลเซียมคาร์บอเนต ( CaCO 3 ) พบมากในธรรมชาติเกิดอยู่ในแบบของ Limestone Marble ชอล์ก หอย เปลือกหอยกาบ และไข่มุก CaCO 3 ที่บริสุทธิ์ จะมีสีขาว CaCO 3 ที่อยู่ในรูปแบบของ Marble ใช้ประโยชน์ในการก่อสร้าง แต่ถ้าอยู่ในรูป Limestone ผสม Clay แล้วให้ความร้อนจะให้ซีเมนต์

12. แคลเซียมฟอสเฟต [ Ca 3 (PO 4 ) 2] พบมากในมลรัฐฟลอริดา อยู่ในกระดูก มีประโยชน์ใช้ทำปุ๋ยซึ่งอยู่ในรูป Super phosphate

13. แคลเซียมซัลเฟต ( CaSO 4 .2H 2O ) มีอยู่ในธรรมชาติในชื่อ ยิปซัม ใช้ในการกสิกรรมเพื่อทำให้ดินดี และยังใช้ในอุตสาหกรรมทำปูนปลาสเตอร์

14. อะลูมิเนียม ( Al ) เป็นธาตุที่มีมากเป็นที่ 3 ในโลก ผู้พบอะลูมิเนียมเป็นคนแรกคือ Hans Christan Oersted อะลูมิเนียมเป็นโลหะที่สำคัญมากและยังราคาถูก ในอุตสาหกรรมใช้อะลูมิเนียมมากที่สุด โดยการผสมกับธาตุอื่นเป็นโลหะผสม (Alloys ) สารประกอบอะลูมิเนียม ได้แก่ อะลูมิเนียมออกไซด์ (Al 2O 3 ) บางทีเรียกคอรันดัม มีความแข็งมากเกือบเท่าเพชร บางที่เรียก Emery บุษราคัม Sapphire ทับทิมก็เป็นพวกอะลูมิเนียมออกไซค์ที่ไม่บริสุทธิ์

15. สารส้ม ( Al 2O 3.14H 2O) ใช้แกว่งน้ำให้ตะกอนตกลงก้นตุ่ม

16. เกาลิน หรือ ดินขาว ( H 4 Al 2 Si 2 O 9 ) ใช้ประโยชน์คือ เอาทำเครื่องเคลือบดินเผา

17. เหล็ก ( Fe ) เป็นธาตุที่มีมากเป็นที 4 ในโลก ซึ่งเหล็กนี้ได้จากการถลุงเหล็ก โดยใช้เตาบลาสเฟอร์เนส (Blast Furnace ) เหล็กที่ได้มาจาก Blast Furnace เป็นเหล็กที่ไม่บริสุทธิ์เรียก Pigiron

18. เหล็กกล้า เป็นเหล็กที่ใช้ประโยชน์มาก เช่น ทำขัน ทำขบวนรถไฟ

19. เหล็กกล้าผสม คุณสมบัติและประโยชน์ที่เหล็กกล้าถูกสารอื่นผสม ดังนี้

– เติมโครเมียม ( Cr ) ทำให้เหล็กเหนียว แข็ง ใช้ทำมีดโกน เกียร์รถยนต์ เหล็กกล้ากันสนิม (Stainless Steel )
– เติมนิเกิล ( Ni ) ทำให้เหล็กเหนี่ยวไม่เปราะ ใช้ทำชิ้นส่วนรถยนต์
– เติมแมงกานีส ( Mn )ทำให้เหล็กแข็งและเหนียวใช้ทำตู้นิรภัยชิ้นส่วนเรือรบ
– เติมทังสเตน ( W ) ทำให้เหล็กเหนียว ใช้ทำชิ้นส่วนรถยนต์

20. ทองแดง ( Cu ) ซึ่งพบมากในธรรมชาติเกิดในรูปของสินแร่ต่างๆ และมีอยู่ในเลือดของสัตว์บางชนิด คือ มีใน Haemocyanin (ฮีมี)ทองแดงมีคุณสมบัติเป็นโลหะ เป็นตัวนำไฟฟ้าที่ดีมากลงมาจากเงิน

21. ทองเหลือง ( Brass ) คือ ทองแดงผสมกับสังกะสี ใช้ทำกุญแจ ปลอกกระสุนปืน กรอบประตู

22. บรอนซ์ ( Bronze ) บางทีเรียกสัมฤทธิ์ ลงหินหรือทองม้าล่อ คือ ทองแดงผสมกับดีบุก ในอัตราส่วนต่างๆ

23. จุนสี เป็นสารประกอบที่สำคัญของทองแดง บางทีเรียก Blue Vitriol มนุษย์ใช้จุนสีฆ่าเห็ดรา (Fungicide ) ฆ่าเชื้อโรคจัดเป็นพวกยาประเภท Germicide

24. เงิน ( Ag ) เป็นสื่อไฟฟ้าและความร้อนที่ดีที่สุด ทนทานต่อการกัดกร่อนของกรดอินทรีย์ และโซดาไฟ

25. ทองคำ ( Au ) เป็นธาตุที่หายากมาก มีในโลกประมาณ 1 เท่าของเงิน ความบริสุทธิ์ของทองคำใช้วัดเป็นกะรัต ทองคำที่บริสุทธิ์จริงคือ ทองคำ 24 กะรัต ทองคำนี้ใช้ทำทองขาวเทียม (White gold ) ซึ่งมีสีคล้ายทองขาว ประกอบด้วยทอง 80 % นิกเกิล 20%

26. โคบอลท์ ( Co ) โลหะนี้ผสมกับเหล็กกล้าเพื่อใช้เป็นเครื่องมือตัดโลหะ ประโยชน์สำคัญมากใช้ทำโคบอลท์ 60 เพื่อการรักษามะเร็ง

27. ทังสเตน ( W ) ปัจจุบันใช้ทำไส้หลอดไฟฟ้า ใช้ผสมกับเหล็กใช้ทำ Tungsten carbide ซึ่งจัดว่าเป็นสารที่แข็งมาก ใช้ประกอบเครื่องมือตัดโลหะด้วยความเร็วสูง

28. เยอรเมเนียม ( Ge ) เป็นธาตุที่หายากมาก ใช้เป็นส่วนประกอบ ของเครื่องทรานซิสเตอร์ และใช้ในเครื่องอิเล็กทรอนิกส์ต่างๆ

การแยกสารผสม

ที่มา : http://peenang5700.blogspot.com/2012/09/blog-post.html

ที่มา : http://nakhamwit.ac.th/pingpong_web/Matter.htm

ที่มา : https://sites.google.com/site/dakdeecharwdong/bth-thi-2-sar-ni-chiwit-praca-wan/3-kar-yaek-sar-neux-phsm-laea-sar-neux-deiyw

สสารและการจำแนก

สาร และ สมบัติของสาร
           สสาร ( Matter ) หมายถึงสิ่งที่มีมวล ต้องการที่อยู่ และ สามารถสัมผัสได้โดยประสาทสัมผัสทั้ง 5 เช่น ดิน น้ำ อากาศ ฯลฯ ภายใน สสารเป็นเนื้อของสสาร เรียกว่า สาร ( Substance )

           สาร ( Substance ) คือ สสารที่ทราบสมบัติ หรือ สสารที่จะศึกษา ดังนั้นจึงเป็นสสารที่เฉพาะเจาะจง ซึ่งจะมีสมบัติของสาร
2 ประเภท คือ
– สมบัติกายภาพ ( Physical Property ) หมายถึง สมบัติที่สังเกตได้จากลักษณะภายนอก และ เกี่ยวกับวิธีการทางฟิสิกส์ เช่น ความหนาแน่น , จุดเดือด , จุดหลอมเหลว
 
– สมบัติทางเคมี ( Chemistry Property ) หมายถึง สมบัติที่เกิดขึ้นจากการทำปฏิกิริยาเคมี เช่น การติดไฟ , การเป็นสนิม , ความเป็น กรด – เบส ของสาร
การเปลี่ยนแปลงสาร
การเปลี่ยนแปลงสาร แบ่งออกเป็น 2 รูปแบบ คือ
 – การเปลี่ยนแปลงทางกายภาพ ( Physical Change ) หมายถึง การเปลี่ยนแปลงของสารที่เกี่ยวกับสมบัติกายภาพ โดยไม่มีผลต่อ องค์ประกอบภายใน และ ไม่เกิดสารใหม่ เช่น การเปลี่ยนสถานะ , การละลายน้ำ

– การเปลี่ยนแปลงทางทางเคมี ( Chemistry Change ) หมายถึง การเปลี่ยนแปลงของสารที่เกี่ยวข้องกับสมบัติทางเคมีซึ่งมีผลต่อองค์ประกอบภายใน และจะมีสมบัติต่างไปจากเดิม นั่นคือ การเกิดสารใหม่ เช่น กรดเกลือ ( HCl ) ทำปฏิกิริยากับลวด แมกนีเซียม ( Mg ) แล้วเกิดสารใหม่ คือ ก๊าซไฮโดรเจน ( H2 )

การจัดจำแนกสาร
จะสามารถจำแนกออกเป็น 4 กรณี ได้แก่
1. การใช้สถานะเป็นเกณฑ์
แบ่งออกเป็น 3 กลุ่ม คือ
– สถานะที่เป็นของแข็ง ( Solid ) จะมีรูปร่าง และ ปริมาตรคงที่ ซึ่งอนุภาคภายในจะอยู่ชิดติดกัน เช่น ด่างทับทิม ( KMnO4 ) , ทองแดง ( Cu )
– สถานะที่เป็นของเหลว ( Liquid ) จะมีรูปร่างตามภาชนะที่บรรจุ และ มีปริมาตรที่คงที่ ซึ่งอนุภาคภายในจะอยู่ชิดกันน้อยกว่าของแข็ง และ มีสมบัติเป็นของไหล เช่น น้ำมัน , แอลกอฮอล์ , ปรอท ( Hg ) ฯลฯ
– สถานะที่เป็นก๊าซ ( Gas ) จะมีรูปร่าง และ ปริมาตรที่ไม่คงที่ โดยรูปร่าง จะเปลี่ยนไปตามภาชนะที่บรรจุ อนุภาคภายในจะอยู่ ห่างกันมากที่สุด และ มีสมบัติเป็นของไหลได้ เช่น ก๊าซหุงต้ม , อากาศ

2. การใช้เนื้อสารเป็นเกณฑ์ จะมีสมบัติทางกายภาพของสารที่ได้จากการสังเกตลักษณะความแตกต่างของเนื้อสาร ซึ่งจะจำแนกได้ออกเป็น 2 กลุ่ม คือ
– สารเนื้อเดียว ( Homogeneous Substance ) หมายถึง สารที่มีเนื้อสารเหมือนกันทุกส่วน ทำให้สารมีสมบัติเหมือนกันตลอดทุกส่วน เช่น แอลกอฮอล์ , ทองคำ ( Au ) , โลหะบัดกรี
– สารเนื้อผสม ( Heterogeneous Substance ) หมายถึง สารที่มีเนื้อสารแตกต่างกันในแต่ละส่วน จะทำให้สารนั้นมีสมบัติ ไม่เหมือนกันตลอดทุกส่วน เช่น น้ำอบไทย , น้ำคลอง ฯลฯ

 3. การละลายน้ำเป็นเกณฑ์ จะจำแนกได้ออกเป็น 3 กลุ่ม คือ
– สารที่ละลายน้ำได้ เช่น เกลือแกง ( NaCl ) , ด่างทับทิม ( KMnO4 ) ฯลฯ
– สารที่ละลายน้ำได้บ้าง เช่น ก๊าซคลอรีน ( Cl2 ) , ก๊าซคาร์บอนไดออกไซด์ ( CO2 ) ฯลฯ
– สารที่ไม่สามารถละลายน้ำได้ เช่น กำมะถัน ( S8 ) , เหล็ก ( Fe ) ฯลฯ

4. การนำไฟฟ้าเป็นเกณฑ์  จะจำแนกได้ออกเป็น 2 กลุ่ม ได้แก่
– สารที่นำไฟฟ้าได้ เช่น ทองแดง ( Cu ) , น้ำเกลือ ฯลฯ
– สารที่ไม่นำไฟฟ้า เช่น หินปูน ( CaCO3 ) , ก๊าซออกซิเจน ( O2 )

แต่โดยส่วนใหญ่นักเคมี จะแบ่งสารตามลักษณะเนื้อสารเป็นเกณฑ์ ดังนี้


สารบริสุทธิ์ ( Pure Substance ) คือ สารเนื้อเดียวที่มีจุดเดือด และ จุดหลอมเหลวคงที่
ธาตุ ( Element ) คือ สารบริสุทธิ์ที่ประกอบด้วยอะตอมเพียงชนิดเดียวกัน เช่น คาร์บอน ( C ) , กำมะถัน ( S8 )
สารประกอบ ( Compound Substance ) เกิดจากธาตุตั้งแต่ 2 ชนิดขึ้นไปมารวมกัน โดยมีอัตราส่วนในการร่วมกันคงที่แน่นอนได้แก่ กรดน้ำส้ม ( CH3COOH ) , กรดไฮโดรคลอริก ( HCl ) ฯลฯ
ของผสม ( Mixture ) หมายถึง สารที่เกิดจากการนำสารตั้งแต่ 2 ชนิดขึ้นไปมาผสมกันโดยไม่จำกัดส่วนผสม และ ในการผสมกันนั้นไม่มีปฏิกิริยาเกิดขึ้นระหว่างสารองค์ประกอบที่นำมาผสมกัน ซึ่งมี 3 ประเภท ได้แก่

   1. สารละลาย ( Solution Substance ) เป็นสารเนื้อเดียวที่มีสัดส่วนในการรวมกันของธาตุ หรือ สารประกอบไม่คงที่ไม่สามารถเขียนสูตรได้อย่างแน่นอน และ มีขนาดอนุภาคที่เล็กกว่า 10-7 เซนติเมตร ซึ่งมี 3 สถานะ เช่น อากาศ , น้ำอัดลม , นาก , และ โลหะผสม ทุกชนิด ฯลฯ ซึ่งสารละลายจะแบ่งออกเป็น 2 ส่วน ได้แก่ ตัวทำละลาย ( Solvent ) และ ตัวถูกละลาย ( Solute ) จะมีข้อสังเกต ดังนี้
สารใดที่มีปริมาณมากจะเป็นตัวทำละลาย และ สารใดมีปริมาณน้อยจะเป็นตัวถูกละลาย เช่น
แอลกอฮอล์ฆ่าเชื้อ มีเอทานอล 70 % และ น้ำ ( H2O ) 30 %  หมายความว่า น้ำจะเป็นตัวถูกละลาย และ เอทานอลเป็นสารละลาย เพราะแอลกอฮอล์มีปริมาณตามเปอร์เซนต์ที่มากกว่าน้ำ
สารใดที่มีสถานะเช่นเดียวกับสารละลายเป็นตัวทำละลาย เช่น
น้ำเชื่อม ซึ่งน้ำเชื่อมจัดอยู่ในสภาพที่เป็นของเหลว ( Liquid ) ดังนั้นจึงสรุปได้ว่า น้ำเป็นตัวทำละลาย และ น้ำตาลทราย ( C12H22O11 ) เป็นตัวถูกละลาย

2. สารแขวนลอย ( Suspension Substance ) คือ สารที่เกิดจากอนุภาคขนาดเส้นผ่าศูนย์กลางที่มากกว่า 10-4 เซนติเมตร ซึ่งจะลอยกระจายอยู่ในตัวกลางโดยอนุภาคที่มีอยู่ในของผสมนั้นมีขนาดใหญ่ จึงสามารถมองเห็นอนุภาคในของผสมได้อย่างชัดเจน เมื่อตั้งทิ้งไว้  อนุภาคจะตกตะกอนลงมา ซึ่งสารแขวนลอยนั้นจะไม่สามารถผ่านได้ทั้งกระดาษกรอง และ กระดาษเซลโลเฟน เช่น โคลน , น้ำอบไทย

 3. คอลลอยด์ ( Colliod ) จะประกอบด้วยอนุภาคขนาดเส้นผ่าศูนย์กลางระหว่าง 10-4 และ 10-7 เซนติเมตร ซึ่งจะไม่มีการตกตะกอน  สามารถกระเจิงแสงได้ ซึ่งเรียกปรากฏการณ์นี้ว่า ” ปรากฏการณ์ทินดอลล์ ” และ ภายในอนุภาคก็มีการเคลื่อนที่แบบบราวน์เนียน( Brownian Movement ) กล่าวคือ เป็นการเคลื่อนที่ที่ไม่แน่นอน ในแนวเส้นตรง ซึ่งจะสามารถส่องดูได้จากเครื่องที่เรียกว่า ” อัลตราไมโครสโคป ” ( Ultramicroscope ) ซึ่งคอลลอยด์จะสามารถผ่านกระดาษกรองได้ แต่ไม่สามารถผ่านกระดาษเซลโลเฟนได้ เช่น กาว , นมสด

 การกรอง คือ การแยกสารผสมที่มีสถานะเป็นของแข็งออกจากของเหลว โดยใช้กระดาษกรองซึ่งมีรูพรุนขนาดเล็ก ทำให้อนุภาคของของแข็งนั้นไม่สามารถผ่านกระดาษกรองได้ ส่วนอนุภาคของของเหลวจะผ่านกระดาษกรองได้ ซึ่งในชีวิตประจำวันเราจะคุ้นเคยกับการกรองในรูปของการใช้ผ้าขาวบางในการคั้นน้ำกะทิจากมะพร้าว แผ่นกรองอากาศในเครื่องปรับอากาศ อุปกรณ์กรองน้ำสะอาดในเครื่องกรองน้ำ เป็นต้น

รูปแสดงการกรองด้วยกรวยกรอง

ตัวอย่างสารผสมที่ใช้การกรองในการทำสารให้บริสุทธิ์ เช่น น้ำกับทราย น้ำกับหินปูน น้ำตาลทรายกับกรวดทราย เป็นต้น

การทดสอบความบริสุทธิ์ของสาร
มี 3 ประเภท ได้แก่

1. การหาจุดเดือด ( Boiling Point ) การที่สารไม่บริสุทธิ์ หรือ สารละลายจุดเดือดไม่คงที่ เกิดจากอัตราส่วนระหว่างจำนวนโมเลกุลของตัวถูกละลาย และ ตัวทำละลาย เปลี่ยนแปลงไปโมเลกุลที่มีจุดเดือดต่ำจะระเหยไปเร็วกว่าทำให้สารที่มีจุดเดือดสูงใน อัตราส่วนที่ มากกว่าจึงเป็นผลให้จุดเดือดสูงขึ้นเรื่อย ๆ โดยดูจากรูปที่แสดงเป็นกราฟ

 2. การหาจุดหลอมเหลว ( Melting Point ) จะสามารถทดสอบกับสารที่บริสุทธิ์ และสารที่ไม่บริสุทธิ์ได้ โดย
 – สารบริสุทธิ์จะมีจุดหลอมเหลวคงที่ และ มีอุณหภูมิช่วงการหลอมเหลวแคบ
– สารไม่บริสุทธิ์จะมีจุดหลอมเหลวไม่คงที่ และ มีอุณหภูมิในช่วงการหลอมเหลวกว้าง
ซึ่งอุณหภูมิฃ่วงการหลอม หมายถึง อุณหภูมิที่สารเริ่มต้นหลอมจนกระทั่งสารนั้นหลอมหมดโดยในอุณหภูมิช่วงการหลอม ถ้าแคบต้องไม่เกิน 2 องศาเซลเซียส โดยดูจากรูปที่แสดงเป็นกราฟ

        

 

 3. การหาจุดเยือกแข็ง ( Freezing Point ) จะสามารถทดสอบกับสารบริสุทธิ์ และ สารไม่บริสุทธิ์ ซึ่งไม่ค่อยนิยม เพราะจะต้อง ใช้เวลานานมากในการหาจุดเยือกแข็ง โดย
  – สารบริสุทธิ์จะมีจุดเยือกแข็งคงที่
– สารไม่บริสุทธิ์จะมีจุดเยือกแข็งไม่คงที่

โดยดูจากรูปที่แสดงเป็นกราฟ

 

          

การแยกสาร
ใช้ในการแยกสารประกอบซึ่งมี 7 วิธี ได้แก่

การตกตะกอน

            การตกตะกอน คือ การแยกสารผสมที่เป็นของแข็งที่แขวนลอยอยู่ในของเหลว โดยมีหลักการที่สำคัญ คือ การนำสารผสมตั้งทิ้งไว้ เนื่องจากอนุภาคของแข็งที่แฝงอยู่นั้นมีน้ำหนัก ดังนั้นจึงตกตะกอนอยู่ที่ก้นภาชนะ จากนั้นรินอนุภาคของเหลวด้านบนออกจากอนุภาคของของแข็งจะทำให้ได้สารบริสุทธิ์ทั้งสองส่วน ตัวอย่างของผสมที่ใช้วิธีการแยกสารโดยการตกตะกอน คือ น้ำโคลน ประกอบด้วยส่วนของดินที่แขวนลอยในน้ำ เมื่อตั้งทิ้งไว้นานๆ อนุภาคของดินจะตกตะกอนอยู่ที่ก้นภาชนะ ส่วนน้ำจะใสขึ้นสามารถรินแยกออกจากกันได้
เพื่อเป็นการลดเวลาในการตกตะกอนของสารแขวนลอย นักวิทยาศาสตร์จึงได้คิดค้นเครื่องเหวี่ยง (centrifuge) แรงเหวี่ยงดังกล่าวจะทำให้ของแข็งที่แขวนลอยในของเหลวตกตะกอนได้ง่ายและเร็วขึ้น

รูปแสดงเครื่องเหวี่ยงที่ใช้ในการตกตะกอน

การกลั่น

            การกลั่น คือ การแยกสารผสมที่เป็นของเหลวหรือของแข็งที่ละลายเป็นเนื้อเดียวกับของเหลว โดยอาศัยความแตกต่างของจุดเดือดและสมบัติการระเหยยากของสาร หลักการที่สำคัญคือ ทำให้ของเหลวกลายเป็นไอโดยการให้พลังงานความร้อน ทำให้สารที่มีจุดเดือดต่ำกว่าจะระเหยเป็นไอก่อน และเมื่อเย็นลงไอจะควบแน่นแล้วกลั่นตัวเป็นของเหลวที่บริสุทธิ์ การกลั่นแบ่งออกเป็น 2 ประเภท คือ
1. การกลั่นธรรมดา โดยทั่วไปใช้แยกสารผสมที่เป็นอนุภาคของแข็งละลายในอนุภาคของเหลว ซึ่งเนื่องจากองค์ประกอบของสารผสมมีสถานะต่างกันทำให้จุดเดือดมีความแตกต่าง กันมาก เช่น น้ำเกลือ ประกอบด้วย น้ำที่มีสถานะเป็นของเหลวและเกลือที่มีสถานะเป็นของแข็ง เมื่อให้ความร้อนแก่น้ำเกลือ น้ำจะระเหยกลายเป็นไอก่อนเพราะจุดเดือดต่ำกว่าเกลือ และเมื่อไอน้ำผ่านถึงเครื่องควบแน่นจะทำให้ไอน้ำกลั่นตัวเป็นหยดน้ำที่บริสุทธิ์
ส่วนเกลือจะอยู่ในขวดกลั่นเพราะยังไม่ถึงจุดเดือดของเกลือจึงไม่สามารถกลายเป็นไอได้ ทำให้สารที่กลั่นได้คือ น้ำ สารที่เหลืออยู่ในขวดกลั่นคือ เกลือ ดังรูป

รูปแสดงการกลั่นแบบธรรมดา

ข้อควรทราบ
– การกลั่นธรรมดาเหมาะกับสารผสมที่ต่างสถานะกัน หรือสารที่มีจุดเดือด (boiling point, b.p.) ต่างกันมากกว่า 80 องศาเซลเซียส
– การกลั่นนั้นมีกระบวนการแบบเดียวกับการเกิดฝน
2. การกลั่นลำดับส่วน ใช้แยกสารละลายที่มีสถานะเป็นของเหลว เนื่องจากองค์ประกอบมีสถานะเหมือนกัน ทำให้จุดเดือดต่างกันไม่มาก
ดังนั้นจึงไม่สามารถทำสารให้บริสุทธิ์ด้วยกระบวนการกลั่นธรรมดาได้ เพราะจะได้สารที่กลั่นออกมาไม่บริสุทธิ์อธิบายได้ดังนี้ สารที่ระเหยก่อนยังเป็นไอไม่สมบูรณ์ สารอีกชนิด ก็ระเหยกลายเป็นไอตามมา เมื่อผ่านไปยังเครื่องควบแน่น จะกลั่นตัวได้สารทั้งสองชนิดออกมาจึงเป็นการแยกสารที่ไม่สมบูรณ์ โดยมีหลักการ คือ สามารถแยกสารละลายที่จุดเดือดต่างกันเล็กน้อย และสารที่มีจุดเดือดต่ำจะกลั่นตัวออกมาก่อน เช่น การแยกน้ำออกจากแอลกอฮอล์ (น้ำมีจุดเดือด 100 องศาเซลเซียส แอลกอฮอล์มีจุดเดือด 78.5 องศาเซลเซียส) เมื่อนำสารละลายมากลั่น แอลกอฮอล์จะระเหยกลายเป็นไอก่อน ขณะเดือดนอกจากเกิดไอของแอลกอฮอล์แล้วยังมีไอน้ำระเหยตามมาด้วย เมื่อไอลอยขึ้นสู่คอลัมน์แก้วที่อุณหภูมิต่ำลงเรื่อยๆ ทำให้ไอน้ำควบแน่นกลับสู่ขวดกลั่น ส่วนไอของแอลกอฮอล์จะผ่านไปได้และไปกลั่นตัวที่เครื่องควบแน่น ซึ่งมีความบริสุทธิ์ของแอลกอฮอล์เกือบสมบูรณ์

รูปแสดงการกลั่นลำดับส่วน

นอกจากนี้ การกลั่นลำดับส่วนยังเป็นการนำสารประกอบไฮโดรคาร์บอนที่มีคุณค่าในน้ำมันดิบออกมาใช้ประโยชน์ได้ด้วยกระบวนการนี้

รูปแสดงผลิตภัณฑ์ที่ได้จากการกลั่นลำดับส่วนของน้ำมันดิบ

การตกผลึก

            การตกผลึก คือ การแยกของผสมที่เป็นของแข็งที่มีสมบัติการละลายในตัวทำละลายต่างกันและได้ไม่เท่ากันทุกอุณหภูมิ มีหลักการ คือ เมื่อนำของผสมละลายในตัวทำละลายต้มสารละลายนั้นจนละลายหมด แล้วทิ้งให้อุณหภูมิลดลง สารที่ละลายน้อยกว่าจะอิ่มตัวแล้วตกผลึกแยกออกมาก่อน เช่น น้ำตาลกับเกลือซิลเวอร์ไนเตรตกับโพแทสเซียมไนเตรต การแยกเกลือโซเดียมคลอไรด์ออกจากน้ำทะเล

รูปแสดงตัวอย่างผลึกบางชนิด

การสกัดด้วยตัวทำละลาย
การสกัดด้วยตัวทำละลาย คือ การแยกสารโดยอาศัยสมบัติการละลายของสารในตัวทำละลาย ต้องคำนึงถึงตัวทำละลายที่เหมาะสมเพื่อให้ได้สารที่ต้องการในปริมาณมาก มีหลักการดังนี้
– เลือกตัวทำละลายที่เหมาะสมเพื่อสกัดให้ได้สารที่ต้องการออกมามากและต้องมีสิ่งเจือปนติดน้อยที่สุด และไม่ทำปฏิกิริยากับสารที่ต้องการสกัด
– กรณีที่ต้องแยกสารผสมที่มีองค์ประกอบปนกันหลายชนิด ต้องเลือกตัวทำละลายที่ละลายสารใดสารหนึ่งได้มากและอีกสารได้น้อยมาก เพื่อให้เจือปนกันน้อยที่สุด
– แยกสารที่ไม่ต้องการออกไป โดยกระบวนการแยกสารต่างๆ เช่น การกรอง เป็นต้น
– แยกสารที่ต้องการออกจากตัวทำละลาย
ซึ่งวิธีการนี้จะนิยมใช้สกัดสีจากธรรมชาติ สมุนไพร สกัดน้ำมันหอมระเหย เป็นวิธีการที่ประหยัดและปลอดภัย

 

รูปแสดงน้ำมันหอมระเหยที่ได้จากการสกัดด้วยตัวทำละลาย

  การโครมาโทรกราฟี
เหมาะสมสำหรับการแยกสารที่มความสามารถในการละลาย และ ดูดซับไม่เท่ากัน , สารที่มีปริมาณน้อย และ ไม่มีสี โดยหลักสำคัญ มีดังนี้
– ในการทดลองทุกครั้งจะต้องปิดฝา เพื่อป้องกันตัวทำละลายแห้ง ในขณะที่เคลื่อนที่บนตัวดูดซับ
– ถ้าสารเคลื่อนทีใกล้เคียงกันมาก แสดงว่าสารมีความสามารถในการละลาย และ ดูดซับได้ใกล้เคียง และ จะแก้ไขได้โดย การเปลี่ยนตัวทำละลาย หรือ เพิ่มความยาวของดูดซับได้ แต่สารที่เคลื่อนที่ได้ระยะทางเท่ากันในตัวทำละลาย และ ตัวดูดซับใกล้เคียงกัน มักจะสรุปได้ว่าสารนั้นเป็นสารเดียวกัน
โดยวิธีนี้สามารถทำให้สารบริสุทธิ์ได้ โดยตัดแบ่งสารที่ต้องการละลายในตัวทำละลายที่เหมาะสม แล้วระเหยตัวทำละลายนั้นทิ้งไป แล้วนำสารนั้นมาทำการโครมาโทรกราฟีใหม่ จนได้สารบริสุทธิ์

 

     การสกัดด้วยไอน้ำ
เหมาะสมสำหรับการสกัดพวกน้ำมันหอมระเหยจากพืช และ การทำน้ำหอม ( CH3COOH2O ) โดยมีหลักสำคัญ ดังนี้
– จุดเดือดต่ำจะระเหยง่าย ถ้าเป็นสารที่มีจุดเดือดสูง จะต้องการกลั่นโดยอาศัยการเปลี่ยนแปลงความดันในระบบ
– สารส่วนใหญ่ไม่ละลายน้ำ

 

 การกรอง 
เป็นวิธีการแยกสารออกจากกันระหว่างของแข็งกับของเหลว หรือใช้แยกสารแขวนลอยออกจากน้ำ ซึ่งใช้กันมากในทางเคมี โดยเฉพาะในห้องปฏิบัติการที่กรองสารในปริมาณน้อย ๆ การกรองนั้นจะต้องเทสารผ่านกระดาษกรอง อนุภาคของแข็งที่ลอดผ่านรูกระดาษกรองไม่ได้จะอยู่บนกระดาษกรอง ส่วนน้ำและสารที่ละลายน้ำได้จะผ่านกระดาษกรองลงสู่ภาชนะ

การคำนวณหาค่า Rf  ( Rate of Flow )  เพื่อนำมาคำนวณค่าของสารละลาย

ค่า Rf = ระยะทางที่สารเคลื่อนที่ / ระยะทางที่ตัวทำละลายเคลื่อนที่

โดยค่า Rf ไม่มีหน่วย แต่มีค่าที่สูงสุดเท่ากับ 1

1 2