ขนาดเเละทิศทางของเเรง

ความหมายของแรง

แรง หมายถึง อำนาจภายนอกที่สามารถทำให้วัตถุเปลี่ยนสถานะได้ เช่นทำให้วัตถุที่อยู่นิ่งเคลื่อนที่ไป ทำให้วัตถุที่เคลื่อนที่อยู่แล้วเคลื่อนที่เร็วหรือช้าลง ทำให้วัตถุมีการเปลี่ยนทิศตลอดจนทำให้วัตถุมีการเปลี่ยนขนาดหรือรูปทรงไปจากเดิมได้แรงเป็นปริมาณเวกเตอร์ ที่มีทั้งขนาดและทิศทางการรวมหรือหักล้างกันของแรงจึงต้องเป็นไปตามแบบเวกเตอร์

เวกเตอร์ของแรง

ปริมาณบางปริมาณที่ใช้กันอยู่ในชีวิตประจำวันบอกเฉพาะขนาดเพียงอย่างเดียวก็ได้ความหมายสมบูรณ์แล้ว แต่บางปริมาณจะต้องบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ ปริมาณในทางฟิสิกส์แบ่งออกเป็น 2 ประเภท คือ

1. ปริมาณสเกลาร์ (scalar quantity) คือ ปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายที่สมบูรณ์ โดยไม่ต้องบอกทิศทาง เช่น เวลา ระยะทาง มวล พลังงาน งาน ปริมาตร ฯลฯ ในการหาผลลัพธ์ของปริมาณสเกลาร์ทำได้โดยอาศัยหลักทางพีชคณิต คือ ใช้วิธีการบวก ลบ คูณ หาร

2. ปริมาณเวกเตอร์ (vector quantity) คือ ปริมาณที่ต้องการบอกทั้งขนาดและทิศทางจึงจะได้ความหมายที่สมบูรณ์ เช่น ความเร็ว ความเร่ง การกระจัด โมเมนตัม แรง ฯลฯ

ลักษณะที่สำคัญของปริมาณเวกเตอร์

1. สัญลักษณ์ของปริมาณเวกเตอร์ การแสดงขนาดและทิศทางของปริมาณเวกเตอร์จะใช้ลูกศรแทน โดยขนาดของปริมาณเวกเตอร์แทนด้วยความยาวของลูกศรและทิศทางของปริมาณเวกเตอร์แทนด้วยทิศทางของหัวลูกศร สัญลักษณ์ของปริมาณเวกเตอร์ ใช้ตัวอักษรมีลูกศรครึ่งบนชี้จากซ้ายไปขวาแสดงปริมาณเวกเตอร์ ดังรูป

จากรูป เวกเตอร์ A มีขนาด 4 หน่วย ไปทางทิศตะวันออก

เวกเตอร์ B มีขนาด 3 หน่วย ไปทางทิศใต้

2. เวกเตอร์ที่เท่ากัน เวกเตอร์ 2 เวกเตอร์จะเท่ากันก็ต่อเมื่อมีขนาดเท่ากันและทิศทางไปทางเดียวกัน ดังรูป

จากรูป เวกเตอร์ A เท่ากับ เวกเตอร์ B เขียนเป็นสัญลักษณ์

เวกเตอร์ C เท่ากับ เวกเตอร์ D เขียนเป็นสัญลักษณ์

3. เวกเตอร์ตรงข้ามกัน เวกเตอร์ 2 เวกเตอร์จะตรงข้ามกันก็ต่อเมื่อ เวกเตอร์ทั้งสองมีขนาดเท่ากัน แต่มีทิศทางตรงข้ามกัน ดังรูป

จากรูป เวกเตอร์ A ตรงข้ามกับเวกเตอร์ B เขียนเป็นสัญลักษณ์ ได้ว่า

เวกเตอร์ C ตรงข้ามกับเวกเตอร์ D เขียนเป็นสัญลักษณ์ ได้ว่า

ข้อควรทราบ ในการหาผลลัพธ์ของปริมาณเวกเตอร์ ทำได้โดยอาศัยวิธีการทางเวกเตอร์ ซึ่งต้องหาผลลัพธ์ทั้งขนาดและทิศทาง การหาผลลัพธ์ของแรงหลายแรง การรวมแรงซึ่งมีหลายแรงเพื่อจะหาแรงลัพธ์เพียงแรงเดียว นิยมใช้สัญลักษณ์ เรียกว่า

แทน เพื่อรวมผลบวกที่มีแรงหลายๆ ค่า เช่น

กระทำพร้อม ๆ กันที่จุดเดียว ดังนี้

การรวมแรง คือ การหาค่าแรงลัพธ์ () ของแรงย่อยทั้งหมด มีวิธีการหาเหมือนกันกับเวกเตอร์ลัพธ์ เพราะแรงเป็นปริมาณเวกเตอร์ ซึ่งอาจสรุปวิธีการหาแรงลัพธ์ได้ดังนี้

1. โดยวิธีการวาดรูปแบบหางต่อหัว การหาแรงลัพธ์ด้วยวิธีการนี้ทำได้โดยนำหางของแรงที่สองไปต่อกับหัวลูกศรของแรงแรกและนำหางของแรงที่สามไปต่อกับหัวของแรงที่สอง ทำเช่นนี้ไปเรื่อยๆ จนครบทุกแรง แรงลัพธ์ที่ได้ คือ แรงที่ลากจากหางของแรงแรกไปยังหัวของแรงสุดท้าย ดังรูป

2. โดยวิธีการคำนวณ ใช้หาแรงลัพธ์ของแรงย่อยที่มี 2 แรง

1) แรงสองแรงไปในทางเดียวกัน แรงลัพธ์มีขนาดเท่ากับผลบวกของแรงทั้งสอง ส่วนทิศทางของแรงลัพธ์ไปทิศทางเดียวกับแรงทั้งสอง ดังรูป

ผลของแรงลัพธ์ต่อการเคลื่อนที่ของวัตถุ

วัตถุต่างๆ เมื่อมีแรงมากระทำ วัตถุจะมีการเปลี่ยนแปลงสภาพเดิมใน 3 ลักษณะ คือ

1. มีการเปลี่ยนแปลงตำแหน่ง

2. มีการเปลี่ยนแปลงความเร็ว

3. มีการเปลี่ยนแปลงรูปร่างและขนาด

เมื่อแรงที่กระทบต่อวัตถุแตกต่างกัน ย่อมทำให้ผลของการเปลี่ยนแปลงแตกต่างกันไปด้วย ถ้าแรงที่กระทำมีค่ามาก การเปลี่ยนแปลงซึ่งเป็นผลของแรงนั้นย่อมมีการเปลี่ยนแปลงมากด้วย

ในชีวิตประจำวัน การที่วัตถุมีการเปลี่ยนแปลงต่างๆ จะเกิดจากอิทธิพลของแรง แรงที่พบตามธรรมชาติมีอยู่มากมายหลายชนิด ซึ่งก็มีผลต่อการเปลี่ยนแปลงของวัตถุได้แตกต่างกัน

ข้อควรทราบ

– แรงที่กระทำไปในทิศทางเดียวกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วเพิ่มขึ้น

– แรงที่กระทำไปในทิศทางตรงข้ามกับการเคลื่อนที่ จะทำให้วัตถุมีความเร็วลดลง

การเคลื่อนที่

กฎการเคลื่อนที่ของนิวตัน

เซอร์ไอแซก นิวตัน (Sir Issac Newton) นักฟิสิกส์ ชาวอังกฤษ ได้สรุปเกี่ยวกับการเคลื่อนที่ของวัตถุทั้งที่อยู่ในสภาพอยู่นิ่งและในสภาพเคลื่อนที่เป็นกฎการเคลื่อนที่ของนิวตัน ซึ่งสามารถทำให้เราเข้าใจการเคลื่อนที่ต่างๆ ได้ทั้งหมด กฎของนิวตันมี 3 ข้อ ได้แก่

1. กฎการเคลื่อนที่ข้อที่หนึ่งของนิวตัน หรืออาจเรียกว่า กฎแห่งความเฉื่อย (inertia law) กล่าวว่า “วัตถุจะคงสภาพอยู่นิ่ง หรือสภาพเคลื่อนที่ด้วยความเร็วคงตัวในแนวตรง นอกจากจะมีแรงลัพธ์ซึ่งมีค่าไม่เป็นศูนย์มากระทำ” หรือสรุปเป็นสมการ ดังนี้

จากกฎการเคลื่อนที่ข้อที่ 1 ของนิวตันอธิบายได้ว่า ถ้ามีวัตถุวางนิ่งอยู่บนพื้นราบแล้วไม่มีแรงใดมากระทำต่อวัตถุ วัตถุก็ยังคงอยู่นิ่งเช่นเดิมต่อไป หรือถ้ามีแรงสองแรงมากระทำต่อวัตถุโดยแรงทั้งสองมีขนาดเท่ากันแต่ทิศทางตรงข้ามกันจะพบว่า วัตถุยังคงหยุดนิ่งเช่นเดิม จึงสรุปได้ว่า “วัตถุที่อยู่นิ่งถ้าไม่มีแรงภายนอก อื่นใดมากระทำต่อวัตถุหรือมีแรงภายนอกหลายแรงมากระทำต่อวัตถุ แต่แรงลัพธ์เหล่านั้นเป็นศูนย์แล้ววัตถุนั้นยังคงรักษาสภาพนิ่งไว้อย่างเดิม” ดังรูป

หรือถ้าพิจารณาวัตถุที่กำลังเคลื่อนที่บนพื้นระดับราบลื่นซึ่งไม่มีแรงภายนอกใดมากระทำต่อวัตถุ วัตถุก็จะรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวค่าหนึ่ง หรือถ้าให้แรงสองแรงมากระทำต่อวัตถุขณะวัตถุกำลังเคลื่อนที่ โดยแรงทั้งสองมีขนาดเท่ากันแต่มีทิศทางตรงข้ามกัน จะพบว่า วัตถุยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นต่อไป จึงสรุปได้ว่า ” วัตถุที่กำลังเคลื่อนที่ด้วยความเร็วค่าหนึ่งถ้าไม่มีแรงภายนอกมากระทำต่อวัตถุ หรือถ้ามีแรงภายนอกหลายแรงมากระทำต่อวัตถุแต่แรงลัพธ์ของแรงเหล่านั้นเป็นศูนย์แล้ว วัตถุนั้นยังคงรักษาสภาพการเคลื่อนที่ด้วยความเร็วคงตัวนั้นตลอดไป” ดังรูป

จากที่กล่าวมาแล้วข้างต้นสามารถสรุปได้ว่า “ถ้าแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์วัตถุจะไม่เปลี่ยนสภาพการเคลื่อนที่กล่าวคือ ถ้าเดิมวัตถุอยู่นิ่งก็จะอยู่นิ่งตลอดไปแต่ถ้าเดิมวัตถุกำลังเคลื่อนที่อยู่ด้วยความเร็วค่าหนึ่งวัตถุนั้นก็จะยังคงเคลื่อนที่ต่อไปในแนวตรงตามทิศทางเดิมด้วยความเร็วคงตัวนั้นตลอดไป”

2. กฎการเคลื่อนที่ข้อที่สองของนิวตัน หรืออาจเรียกว่า กฎแห่งความเร่ง ถ้ามวลของวัตถุคงตัวแต่เปลี่ยนขนาดของแรง (F) ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะมากขึ้นด้วยจึงสรุปได้ว่า ขนาดของความเร่งแปรผันตรงกับขนาดของแรงลัพธ์ที่กระทำต่อวัตถุ เมื่อมวลคงตัวเขียนเป็นสัญลักษณ์ได้ว่า

และถ้าแรงลัพธ์ (F) ที่กระทำต่อวัตถุคงตัว แต่ถ้าเปลี่ยนมวล (m)ให้มากขึ้น ความเร่ง (a) ของวัตถุก็จะลดลง จึงสรุปได้ว่า ขนาดของความเร่งแปรผกผันกับมวลของวัตถุ เขียนเป็นสัญลักษณ์ได้ว่า

จากข้างต้นสรุปได้ว่า ความเร่ง (a) เป็นสัดส่วนโดยตรงกับแรง (F) ดังนั้นอัตราส่วนของแรงกับความเร่งจะเป็นค่าคงที่ซึ่งตรงกับมวล (m) ของวัตถุ เขียนเป็นความสัมพันธ์จะได้

ดังนั้น จึงสรุปเป็นกฎข้อที่สองของนิวตัน ได้ว่า “เมื่อมีแรงลัพธ์ซึ่งมีขนาดไม่เป็นศูนย์มากระทำต่อวัตถุ จะทำให้วัตถุเกิดความเร่งในทิศเดียวกับแรงลัพธ์ที่มากระทำ และขนาดของความเร่งจะแปรผันตรงกับขนาดของแรงลัพธ์และจะแปรผกผันกับมวลของวัตถุ”

ตัวอย่างที่ 1 ถ้าออกแรง 8 นิวตัน กระทำกับวัตถุมวล 32 กิโลกรัม วัตถุจะมีความเร่งเท่าใด

 

ตัวอย่างที่ 2 มวล 10 กิโลกรัม ต้องการให้เคลื่อนที่ด้วยความเร่ง 6 เมตรต่อวินาทีกำลังสอง จะต้องออกแรงกระทำเท่าใด

3. กฎการเคลื่อนที่ข้อที่สามของนิวตัน จากกฎการเคลื่อนที่ข้อที่หนึ่งและสองของนิวตันจะอธิบายสภาพการเคลื่อนที่ของวัตถุเมื่อมีแรงภายนอกมากระทำต่อวัตถุ ซึ่งจากการศึกษาในขณะที่มีแรงมากระทำต่อวัตถุ วัตถุจะออกแรงโต้ตอบต่อแรงที่มากระทำนั้นด้วย เช่น เมื่อเราออกแรงดึงเครื่องชั่งสปริง เราจะรู้สึกว่าเครื่องชั่งสปริงก็ดึงมือเราด้วยและยิ่งเราออกแรงดึงเครื่องชั่งสปริงด้วยแรงมากขึ้นเท่าใดเราก็จะรู้สึกว่าเครื่องชั่งสปริงยิ่งดึงมือเราไปมากขึ้นเท่านั้น ดังรูป

จากตัวอย่างจะพบว่า เมื่อมีแรงกระทำต่อวัตถุหนึ่ง วัตถุนั้นก็จะออกแรงโต้ตอบในทิศทางตรงข้ามกับแรงที่มากระทำ ซึ่งแรงทั้งสองแรงนี้จะเกิดขึ้นพร้อมกันเสมอ เราเรียกแรงที่มากระทำต่อวัตถุว่า “แรงกิริยา” (action force) และเรียกแรงที่วัตถุโต้ตอบต่อแรงที่มากระทำว่า “แรงปฏิกิริยา” (reaction force) แรงทั้งสองนี้จึงเรียกรวมกันว่า “แรงกิริยา-แรงปฏิกิริยา” (action-reaction) จึงสรุปความสัมพันธ์ระหว่างแรงกิริยากับแรงปฏิกิริยาได้เป็นกฎการเคลื่อนที่ข้อที่ 3 ของนิวตัน ได้ว่า “แรงกิริยาทุกแรงต้องมีแรงปฏิกิริยาซึ่งมีขนาดเท่ากันและทิศทางตรงข้ามกันเสมอ”หรือ action = reaction หมายความว่า เมื่อมีแรงกิริยากระทำต่อวัตถุใดก็จะมีแรงปฏิกิริยาจากวัตถุนั้นโดยมีขนาดแรงเท่ากันแต่กระทำกับวัตถุคนละก้อนเสมอ จึงนำแรงกิริยามาหักล้างกับแรงปฏิกิริยาไม่ได้ เช่น กรณีรถชนสุนัข แรงกิริยา คือ แรงที่รถชนสุนัข จึงทำให้สุนัขกระเด็นไป ในขณะเดียวกันจะมีแรงปฏิกิริยา ซึ่งเป็นแรงที่สุนัขชนรถ จึงทำให้รถบุบ จะเห็นว่าเสียหายทั้ง 2 ฝ่าย แสดงว่าแรงไม่หักล้างกัน ดังรูป

ข้อควรจำ ลักษณะสำคัญของแรงกิริยาแรงปฏิกิริยา

1. จะเกิดขึ้นพร้อมๆกันเสมอ

2. มีขนาดเท่ากัน

3. มีทิศทางตรงข้ามกัน

4. กระทำต่อวัตถุคนละก้อน

ที่มา อ้างอิง

https://sites.google.com/site/krumonieweewan/…/2-chnid-khxng-raeng-1

www.kmitl.ac.th/~ktbencha/project44/CAI/force/…/means.htm

Comments

comments

One comment

ใส่ความเห็น